摘要:
A method of constructing a fully dense metal part or a metal mold half for matin with another mold half to form a mold for casting multiple parts. Steps include placing a pattern having critical pattern surfaces in a flask having an open end. The critical pattern surfaces face upward. Other steps involve covering the critical pattern surfaces with a concentrated heat reversible gel solution added to the flask, and cooling the gel solution to form an elastic solid gel mold. Further steps include removing the flask and the pattern from the elastic gel mold, and casting a ceramic mold around the solid gel mold. In other steps the gel mold is liquified for removal from the ceramic mold and the ceramic mold is inverted so that its critical ceramic surfaces face upward. Still other steps involve covering the critical ceramic surfaces with a powder, and placing a quantity of an infiltration material over the powder, and placing the ceramic mold, the powder, and the infiltration material in a furnace at a temperature sufficient to melt the infiltration material without melting and sintering the powder. The quantity of the infiltration material is sufficient to fill voids between the particles, thereby generating a fully dense mold half.
摘要:
A porous mold material is provided that contains pores for ventilation in a metal casting, which pores range from 20 to 50 microns, and wherein the porosity value of the porous mold material ranges from 25 to 35% by volume. A method is further provided of producing a porous mold material that contains pores ranging from 20 to 50 microns for ventilation in casting, which method is characterized in that the mixing ratio of stainless steel particles to stainless steel short fibers is from 40 wt %:60 wt % to 65 wt %:35 wt %. The porous mold material of this invention does not have defects such as the inferior fluidity of a molten metal in the mold, or the shrinkage and blowholes in cast products.
摘要:
Described are molds, dies and forming tools comprising: a) a heat exchanging body support member; and b) within the support member, a molding cavity portion formed by thermal spraying metallic particles to a desired configuration in the support member. Also described are methods of making a mold, die or forming tool comprising the steps of: a) providing a body support member having a controlled and designed porosity which permits the enhancement of the heat transfer ability of said mold, die or forming tool; b) configuring a surface of the support member to a desired cavity; and c) spraying particles to the configured cavity in the support member, thereby producing a mold, die or forming tool. Preferably, the materials of construction are metallic and are applied by thermal plasma spraying. The particles may also be ceramics, metal matrix composites, ceramic matrix composites, thermoplastic resins, thermoset resins, and composites based thereupon. The controlled porosity of the body of the mold, die and/or forming tool is as important as the use of thermal spray to subsequently form the cavity.
摘要:
A method for producing semi-permanent casting tooling, including the steps of blending a high char resin with a refractory powder to form a plastic moldable material; shaping the plastic moldable material to form a green tooling body; and heating the green tooling body to convert the high char resin into carbon char to form reusable casting tooling. The casting tooling can be used in casting processes including die casting, permanent mold casting and pressure infiltration casting.
摘要:
A casting apparatus and method for producing a closed deck type cylinder block capable of facilitating removal of loose cores from the casted cylinder block. A die portion for forming a water jacket portion is formed with a plurality of notched portion having a bottom wall where a projection is provided. A pair of loose cores are fitted in each notched portion in such a manner that each parting face of the loose cores are in contact with each other. A first draft is provided at each loose cores and is mounted on the projection. In this case, the end of the parting face is placed on the projection. During casting, a molten metal is introduced into a space between the bottom wall and the first draft for forming a bridge portion. Upon solidification of the molten metal, the loose cores remain in the water jacket portion, and a bore is formed at the position corresponding to the projection. If a jig is inserted into the bore, the end of the jig abuts the parting face and pushes the pair of loose cores to move away from each other. Thus, the loose cores are offset from the bridge portion for removal of the loose core from the water jacket portion.
摘要:
In the production of castings from a melt of a reactive metal selected from the group consisting of titanium, titanium alloys, and titanium-based alloys, a reusable casting mold (20) is used; the mold, at least in the area of the surface which comes in contact with the melt, consists of at least one metal selected from the group consisting of tantalum, niobium, zirconium, and/or their alloys. The casting mold (20) preferably consists, at least in the area of the surface which comes in contact with the melt, of a tantalum based alloy containing at least 50 wt. % of tantalum. The casting molds can be made of a homogeneous metal, but it is also possible to insert shells of the metals in question into a base body to form the boundaries of the mold cavities, whereas the base body itself consists of some other metal or alloy or of a nonmetal such as graphite or silicon nitride. Insofar as the casting molds in question are molds for centrifugal casting, it is preferable to use titanium, a titanium alloy, or titanium aluminide as the nonmetal for the base body.
摘要:
The porous metal body of the inventtion has a porosity of 7 to 50%, pore sizes of 1 to 500 .mu.m and a pore distribution satisfying the relationship of:(D.sub.95 -D.sub.5)/D.sub.50 .ltoreq.2.5wherein D.sub.5 is the pore size on the cumulative distribution curve of the pore sizes at a cumulative frequency of 5%, D.sub.50 is the pore size on the curve at a cumulative frequency of 50% and D.sub.95 is the pore size on the curve at a cumulative frequency of 95%. The porous body is improved in porosity characteristics and mechanical strength.The porous metal body is prepared by pressing a metal powder to shape and sintering the shaped body by hot isostatic pressing, or alternatively by enclosing a metal powder in a capsule, subjecting the encapsulated powder to a primary sintering treatment in an isostatic medium to form a primary sintered porous body and heat-treating the sintered body with the capsule removed or without removing the capsule.
摘要:
A sliding core is slidably mounted around the movable die and forms an undercut portion. A first channel communicates with the undercut portion and a second channel communicates with the first channel. A first device for forming the undercut is movably disposed in the first channel. A second device is movably disposed in the second channel for displacing the first device into the undercut portion to form the undercut when a molten metal is poured into the mold.
摘要:
A casting mold includes a cavity formed therein, and an auxiliary mold projecting into the cavity. The auxiliary mold forms a concave portion in a cast product, and it exhibits a thermal expansion coefficient being more than a thermal expansion coefficient exhibited by a molten metal to be charged into the cavity. Hence, the auxiliary mold greatly expands thermally during casting, and it keeps the expanded state during the solidification of the molten metal. Accordingly, the casting mold can prevent the casting defects resulting from the shrinkage cavities from arising in the resulting cast products. All in all, the casting mold can obviate to give the auxiliary mold a tapered configuration, and it can reduce the after-casting machining allowance to be provided in the resulting concave portion.