Abstract:
A tire-wheel assembly comprises a wheel coupled to a rotating shaft; an elastic tube disposed on an outer side of the wheel with respect to a radial direction, the interior of the tube being filled with air; a rigid protective ring disposed on an outer side of the tube with respect to the radial direction separated from the wheel; and a tread ring disposed on an outer side of the protective ring with respect to the radial direction, an inner circumferential surface of the tread ring contacting an outer circumferential surface of the protective ring.
Abstract:
Vehicle systems and components are set forth, which aim to reduce rolling friction caused in part by the contact between the vehicle's tires and the ground surface over which the vehicle is traversing. These systems and/or components thereof may increase the overall fuel efficiency of a vehicle. In the examples provided, the systems and/or components change the tread contact patch of one or more tires during movement of the vehicle.
Abstract:
The energy efficient wheel product substantially reduces energy loss due to tire flex and energy loss from a conventional automotive drive train. The wheel product includes an axis, a hub, two sidewalls, a low pressure inner chamber with shock absorbing hub protector, an outer ring with at least one high pressure pneumatic chamber with tread, and at least one restraint band radially restraining the outer ring to the hub. The hub can include an electric hub motor which rotates the hub, propelling the vehicle. The restraint band, sidewalls and pressurized chambers enable the wheel to simulate an energy efficient high pressure pneumatic wheel, experiencing little deformation when under smooth road conditions. When road conditions are rough, the band, sidewalls and outer chamber can temporarily buckle in response to the increased road forces, simulating a low pressure conventional tire having ample space for deformation. The low pressure chamber and hub protector provide built in suspension and shock absorption capability. The outer ring chamber can be filled with high pressure closed cell foam to prevent flats.
Abstract:
A self-inflating tire assembly includes a tire having a tire cavity between first and second sidewalls that extend respectively from first and second tire core beads to a tire tread region. At least one of the sidewalls is provided with an air tube peristaltic pump assembly. An air tube has an internal tube air passageway and is positioned within a sidewall groove in contacting engagement with opposite groove surfaces surrounding the air tube. The sidewall groove operatively bends within a rolling tire footprint to compress the air tube from an expanded diameter to a flat diameter adjacent the rolling tire footprint. A core bead passageway extends within a core bead adjacent the one tire sidewall for operatively storing air evacuated from the air tube passageway. Conduits are provided to route air from the air tube to the core bead passageway and valve mechanisms are positioned within the core bead passageway to control the flow of air from the core bead passageway into the tire cavity.
Abstract:
The present device is an integrated automotive wheel for electric vehicles which substantially reduces energy loss due to tire flex and energy loss from a conventional drive train. The wheel includes an axle, a hub, two composite sidewalls, a low pressure inner chamber with shock absorbing hub protector, and at least one outer high pressure pneumatic chamber with tread. The hub can contain an electric hub motor which rotates the wheel, propelling the vehicle. The sidewalls include at least one pressurized chamber which position the outer tread ring and enable the wheel to simulate an energy efficient high pressure pneumatic wheel, experiencing little deformation when under smooth road conditions. When road conditions are rough, the sidewalls can temporarily buckle in response to the increased road forces, simulating a low pressure conventional tire having ample space for deformation, with suspension and shock absorption capability built in. The sidewalls and outer ring chamber can be filled with high pressure closed cell foam to prevent flats.
Abstract:
A tire comprising an envelope made at least partly of rubber, defining an internal annular volume and having a crown (1), which defines a tread, two sidewalls (2) joined to the crown (1), and a supporting structure (4). The supporting structure (4) is pressurized and divides the annular volume of the tire into a plurality of compartments (400) or cells, and the sidewalls (2) are connected to or integral with the supporting structure (4).
Abstract:
A tube-type tire to be mounted on the rim of a (e.g., spoke-type) wheel such as that commonly used by a bicycle or a motorcycle, whereby the tube-type tire will operate without a conventional inner tube and as if it were tubeless. The tire includes a main tire section that is seated upon the generally flat shelf of the rim and a pneumatic sealing ring having an inner tube that is seated upon the beadwell of the rim. An air chamber of the inner tube of the sealing ring is inflated to a greater pressure than an air chamber of the main tire section so as to isolate the air chamber of the main tire section from the rim and force the main tire section against the vertical lip of the rim. The sealing ring also has an outer inflatable liner that is located in surrounding engagement with the inner tube to separate the inner tube from the air chamber of the main tire section. The outer liner has one or more O-ring seals projecting outwardly from the side walls thereof and a centering lip projecting downwardly from the side walls. The O-ring seals are moved into sealing engagement with the inside of the main tire section when the air chamber of the inner tube is inflated and the liner is expanded. The centering lips of the liner are seated upon the beadwell of the rim to cause the liner to be automatically centered over the inner tube.
Abstract:
A Re-Inflatable tire and inner tube system comprising of a primary flexible inflatable chamber and at least one secondary flexible inflatable chamber housed within the primary flexible inflatable chamber wherein all chambers share a single common inflation valve and wherein pressure is administered and controlled through the common valve to inflate one chamber at a time, independent and separate from all other chambers, while simultaneously releasing pressure from the chambers not being inflated.
Abstract:
The invention proposes a technique of preventing a propagation of a damage in a reinforcing layer to a toric air bag even if the reinforcing layer arranged on an outer peripheral side of the toric air bag in a safety tire to suppress an unnecessary size growth of the toric air bag and allowed to a proper expansion deformation of the toric air bag in the puncture of the tire or the like is damaged by foreign matters entered through a puncture hole into the tire, in which the reinforcing layer separately arranged from the toric air bag is fitted on the outer peripheral side of the toric air bag having a hollow torus shape over its full periphery to suppress the propagation of the damage in the reinforcing layer to the toric air bag through an interface layer therebetween.
Abstract:
A rubber-fiber composite material of the present invention comprises a non-woven fabric and a rubber which coats the non-woven fabric. At least a part of the non-woven fabric is made of an organic fiber having a single fiber diameter of 10 to 35 μm, a fiber length of 30 to 100 mm and a tensile modulus of 50 GPa or higher. By the use of the non-woven fabric at least a part of which is made of the organic fiber having the above properties, a sufficient impregnation of rubber into the inside of the non-woven fabric is ensured to enable the production of the rubber-fiber composite material having a high stiffness. Using the rubber-fiber composite material of the present invention as the reinforcing material for rubber articles, the resultant rubber articles have enhanced stiffness, improved durability and reduced weight.