Abstract:
The specific field of Invention relates to the surprising and wholly unexpected findings that so-called Catalytic Activated Carbons developed, either to remove chloramines, hydrogen sulfides and bromates or to purify and de-color the hydrocarbon liquids or to remove organic compounds from air, are also capable of removing dissolved heavy metals from contaminated drinking and waste water when given a range of contact times.
Abstract:
The present disclosure relates to shifting a chromaticity of light generated from a light-emitting device. A light-emitting device may incorporate an optical element (e.g., filter) so that light emitted from a light-generating surface having an initial chromaticity may be altered. The optical element may shift the chromaticity of emitted light having the initial chromaticity to a final chromaticity that is different from the initial chromaticity. Thus, the chromaticity of emitted light from the manufactured LEDs that would otherwise be unacceptable for having chromaticity coordinates that fall outside of a desired chromaticity bin is shifted so as to have chromaticity coordinates that fall within suitable parameters. Accordingly, a number of the manufactured LEDs that would normally be discarded may be salvaged.
Abstract:
A method for treating aqueous solutions, wherein a filtrate material is manufactured to have a polymer with ion exchange properties adhered to the surface or impregnated within a porous, granular particle such that the resultant structure does not result in any agglomeration or binding of the granular particles, thereby retaining the maximum surface area of the particle for reacting with metal impurities in solution. A filtrate material comprised of a porous granulated particle and an ion exchange polymer. A method of treating aqueous solutions by passing an aqueous solution through the filtrate material to remove metal impurities in the solution. A method of regenerating the filtrate material that is saturated with metal impurities.
Abstract:
A MEMS device (100) is provided that includes a handle layer (108) having a sidewall (138), a cap (132) overlying said handle layer (108), said cap (132) having a sidewall (138), and a conductive material (136) disposed on at least a portion of said sidewall of said cap (138) and said sidewall of said handle layer (138) to thereby electrically couple said handle layer (108) to said cap (132). A wafer-level method for manufacturing the MEMS device from a substrate (300) comprising a handle layer (108) and a cap (132) overlying the handle layer (108) is also provided. The method includes making a first cut through the cap (132) and at least a portion of the substrate (300) to form a first sidewall (138), and depositing a conductive material (136) onto the first sidewall (138) to electrically couple the cap (132) to the substrate (300).
Abstract:
Methods are provided for manufacturing a sensor. The method comprises depositing a sacrificial material at a first predetermined thickness onto a wafer having at least one sense element mounted thereon, the sacrificial material deposited at least partially onto the at least one sense element, forming an encapsulating layer at a second predetermined thickness less than the first predetermined thickness over the wafer and around the deposited sacrificial material, and removing the sacrificial material. Apparatus for a sensor manufactured by the aforementioned method are also provided.
Abstract:
A computer network includes frame- or packet-based subnetworks connected by switches, the switches being interconnected by high-capacity trunks using a connection-based data transfer protocol similar to Asynchronous Transfer Mode (ATM). Some of the trunks include a Permanent Virtual Path (PVP) trunk crossing an ATM core network, the PVP trunk including one or more bidirectional PVPs. A multipoint-to-point (MPT) protocol is used among the switches to transfer packets as groups of cells directly from “leaf”, or source, switches to “root”, or destination, switches without requiring significant routing-related processing during cell transmission. The switches allocate virtual path identifiers in a conserving manner such that (i) MPT paths from multiple leaf switches are merged to one path with a single virtual path identifier terminating at a root switch; (ii) on the PVP trunks, a virtual path identifier already allocated for an outgoing connection is allocated to an incoming connection ahead of any virtual path identifiers that are completely unallocated; and (iii) a range of virtual path identifiers is pre-provisioned at the core network access points, so that a switch connected to an access point allocates virtual path identifiers from the pre-provisioned range on behalf of upstream switches to extend MPTs across the core network.
Abstract:
A bacteriostatic filter cartridge having a porous core member about which is layered a yarn and/or a polyester membrane and/or melt blown web of polypropylene and/or a trilaminate polypropylene membrane, any or all of which may be impregnated with an antimicrobial agent. The filter cartridge is sized so as to fit tightly into a cartridge housing of a fluid filtration system. Fluid passing through the cartridge housing will be filtered by the filter cartridge to remove contaminants from the water and which prevents the growth of bacterial and other microorganisms on the filter media.
Abstract:
A method and associated circuitry for acquiring a channel of a set of frequency channels by a radio receiver. The radio receiver scans selected control channels and measures the power levels of signals generated upon the respective ones of the control channels and stores values. An attempt to effectuate a communication link with a transmitter which transmits a data signal upon one of the control channels is only attempted if the measured power level on such control channel increases beyond a certain amount. The tuning frequency of the tuning circuitry can be retuned when the tuning circuitry is initially tuned to receive a communication signal transmitted by a transmitter of a less-than-most desired network of transmitters according to a second embodiment.
Abstract:
A fiber blend for use in friction materials. The fiber contains a blend of a highly fibrillated fiber, such as a fibrillated polyacrylonitrile fiber and a fiber with a high carbon content, such as an oxidized carbon fiber precursor.
Abstract:
An error detector circuit, and an associated method, for a discrete receiver. The error detector circuit indicates bad frames of binary information signals which contain distorted bits of data in numbers so great as to prevent a convolutional decoder from generating, accurately, a decoded signal. When bit errors are detected in numbers beyond a first preselected value of the signal quality of a received signal combined with the detected number of bit errors forms a signal beyond a second preselected value, a bad frame is indicated.