摘要:
A plasma processing system having at-electrode RF matching and a method for processing substrates utilizing the same is provided. In one embodiment, the plasma processing system includes a chamber body, the substrate support, an electrode, a lid assembly and an RF tuning element. A substrate support is disposed in a processing volume defined in the chamber body. The electrode is positioned above the substrate support and below a cover of the lid assembly. The RF tuning element is disposed between the cover and the electrode and is coupled to the electrode.
摘要:
The present invention generally relates to a linear PECVD apparatus. The apparatus is designed to process two substrates simultaneously so that the substrates share plasma sources as well as gas sources. The apparatus has a plurality of microwave sources centrally disposed within the chamber body of the apparatus. The substrates are disposed on opposite sides of the microwave sources with the gas sources disposed between the microwave sources and the substrates. The shared microwave sources and gas sources permit multiple substrates to be processed simultaneously and reduce the processing cost per substrate.
摘要:
An apparatus for introducing gas into a processing chamber comprising one or more gas distribution tubes having gas-injection holes which may be larger in size, greater in number, and/or spaced closer together at sections of the gas introduction tubes where greater gas conductance through the gas-injection holes is desired. An outside tube having larger gas-injection holes may surround each gas distribution tube. The gas distribution tubes may be fluidically connected to a vacuum foreline to facilitate removal of gas from the gas distribution tube at the end of a process cycle.
摘要:
Embodiments disclosed herein generally relate to an apparatus and a method for placing a substrate substantially flush against a substrate support in a processing chamber. When a large area substrate is placed onto a substrate support, the substrate may not be perfectly flush against the substrate support due to gas pockets that may be present between the substrate and the substrate support. The gas pockets can lead to uneven deposition on the substrate. Therefore, pulling the gas from between the substrate and the support may pull the substrate substantially flush against the support. During deposition, an electrostatic charge can build up and cause the substrate to stick to the substrate support. By introducing a gas between the substrate and the substrate support, the electrostatic forces may be overcome so that the substrate can be separated from the susceptor with less or no plasma support which takes extra time and gas.
摘要:
In certain aspects, a substrate deposition apparatus, including a gas tube coupled to a gas source, an RF power source and a substrate processing chamber, is provided. The gas tube is adapted to carry process gas and cleaning plasma from the gas source/remote plasma gas source to the substrate processing chamber and the RF power source is adapted to couple RF power to the substrate processing chamber. Furthermore an RF choke coupled to the RF power source and the gas source wherein the RF choke is adapted to attenuate a voltage difference between the RF power source and the gas source to prevent plasma formation in the gas tube during substrate processing. Numerous other aspects are provided.
摘要:
The present invention generally includes a remote plasma source and a method of generating a plasma in a remote plasma source. Cleaning gas may be ignited into a plasma in a remote location and then provided to the processing chamber. By flowing the cleaning gas outside of a cooled RF coil, a plasma may be ignited at either high or low pressure while providing a high RF bias to the coil. Cooling the RF coil may reduce sputtering of the coil and thus reduce undesirable contaminants from being fed to the processing chamber with the cleaning gas plasma. Reduced sputtering from the coil may extend the useful life of the remote plasma source.
摘要:
In certain aspects, a substrate deposition apparatus, including a gas tube coupled to a gas source, an RF power source and a substrate processing chamber, is provided. The gas tube is adapted to carry process gas and cleaning plasma from the gas source/remote plasma gas source to the substrate processing chamber and the RF power source is adapted to couple RF power to the substrate processing chamber. Furthermore an RF choke coupled to the RF power source and the gas source wherein the RF choke is adapted to attenuate a voltage difference between the RF power source and the gas source to prevent plasma formation in the gas tube during substrate processing. Numerous other aspects are provided.
摘要:
In certain embodiments, an apparatus for providing a fixed impedance transformation network for driving a plasma chamber includes a pre-match network adapted to couple between an Active RF match network and a plasma chamber load associated with the plasma chamber. The pre-match network includes (1) a first capacitive element; (2) an inductive element connected in parallel with the first capacitive element to form a parallel circuit that presents a stepped-up impedance to an output of the Active RF match network such that a voltage required to drive the plasma chamber load is reduced; and (3) a second capacitive element coupled to the parallel circuit and adapted to couple to the plasma chamber load. The second capacitive element reduces or cancels at least in part a reactance corresponding to an inductance associated with the plasma chamber load. Numerous other aspects are provided.
摘要:
RF power is coupled to one or more RF drive points (50-56) on an electrode (20-28) of a plasma chamber such that the level of RF power coupled to the RF drive points (51-52, 55-56) on the half (61) of the electrode that is closer to the workpiece passageway (12) exceeds the level of RF power coupled to the RF drive points (53-54), if any, on the other half (62) of the electrode. Alternatively, RF power is coupled to one or more RF drive points on an electrode of a plasma chamber such that the weighted mean of the drive point positions is between the center (60) of the electrode and the workpiece passageway. The weighted mean is based on weighting each drive point position by the time-averaged level of RF power coupled to that drive point position. The invention offsets an increase in plasma density that otherwise would exist adjacent the end of the electrode closest to the passageway.
摘要:
An apparatus for distributing RF power outputs to a first electrode in a parallel plate electrode system for generating plasma in depositing films on a substrate. A RF power output is applied to a distributed RF matching network to excite a plasma from a process gas stream to deposit a uniform film onto the substrate. The distributed matching network includes a load capacitor for receiving a radio frequency power input and an inductor having first and second ends with the first end coupled to the load capacitor. The matching network also includes multiple drive capacitors each of which couples the second end of the inductor to a different one of multiple points distributed on the first electrode. The capacitance of each drive capacitor is user-selectable, and the points on the backing plate to which the drive capacitors are coupled are user-selectable.