Abstract:
A plasma processing system having at-electrode RF matching and a method for processing substrates utilizing the same is provided. In one embodiment, the plasma processing system includes a chamber body, the substrate support, an electrode, a lid assembly and an RF tuning element. A substrate support is disposed in a processing volume defined in the chamber body. The electrode is positioned above the substrate support and below a cover of the lid assembly. The RF tuning element is disposed between the cover and the electrode and is coupled to the electrode.
Abstract:
The present invention generally relates to a linear PECVD apparatus. The apparatus is designed to process two substrates simultaneously so that the substrates share plasma sources as well as gas sources. The apparatus has a plurality of microwave sources centrally disposed within the chamber body of the apparatus. The substrates are disposed on opposite sides of the microwave sources with the gas sources disposed between the microwave sources and the substrates. The shared microwave sources and gas sources permit multiple substrates to be processed simultaneously and reduce the processing cost per substrate.
Abstract:
An apparatus for introducing gas into a processing chamber comprising one or more gas distribution tubes having gas-injection holes which may be larger in size, greater in number, and/or spaced closer together at sections of the gas introduction tubes where greater gas conductance through the gas-injection holes is desired. An outside tube having larger gas-injection holes may surround each gas distribution tube. The gas distribution tubes may be fluidically connected to a vacuum foreline to facilitate removal of gas from the gas distribution tube at the end of a process cycle.
Abstract:
The present invention generally relates to a vertical CVD system having a processing chamber that is capable of processing multiple substrates. The multiple substrates are disposed on opposite sides of the processing source within the processing chamber, yet the processing environments are not isolated from each other. The processing source is a horizontally centered vertical plasma generator that permits multiple substrates to be processed simultaneously on either side of the plasma generator, yet independent of each other. The system is arranged as a twin system whereby two identical processing lines, each with their own processing chamber, are arranged adjacent to each other. Multiple robots are used to load and unload the substrates from the processing system. Each robot can access both processing lines within the system.
Abstract:
The present invention generally includes a remote plasma source and a method of generating a plasma in a remote plasma source. Cleaning gas may be ignited into a plasma in a remote location and then provided to the processing chamber. By flowing the cleaning gas outside of a cooled RF coil, a plasma may be ignited at either high or low pressure while providing a high RF bias to the coil. Cooling the RF coil may reduce sputtering of the coil and thus reduce undesirable contaminants from being fed to the processing chamber with the cleaning gas plasma. Reduced sputtering from the coil may extend the useful life of the remote plasma source.
Abstract:
RF power is coupled to one or more RF drive points (50-56) on an electrode (20-28) of a plasma chamber such that the level of RF power coupled to the RF drive points (51-52, 55-56) on the half (61) of the electrode that is closer to the workpiece passageway (12) exceeds the level of RF power coupled to the RF drive points (53-54), if any, on the other half (62) of the electrode. Alternatively, RF power is coupled to one or more RF drive points on an electrode of a plasma chamber such that the weighted mean of the drive point positions is between the center (60) of the electrode and the workpiece passageway. The weighted mean is based on weighting each drive point position by the time-averaged level of RF power coupled to that drive point position. The invention offsets an increase in plasma density that otherwise would exist adjacent the end of the electrode closest to the passageway.
Abstract:
The present invention generally relates to a vertical CVD system having a processing chamber that is capable of processing multiple substrates. The multiple substrates are disposed on opposite sides of the processing source within the processing chamber, yet the processing environments are not isolated from each other. The processing source is a horizontally centered vertical plasma generator that permits multiple substrates to be processed simultaneously on either side of the plasma generator, yet independent of each other. The system is arranged as a twin system whereby two identical processing lines, each with their own processing chamber, are arranged adjacent to each other. Multiple robots are used to load and unload the substrates from the processing system. Each robot can access both processing lines within the system.
Abstract:
A transmission line RF applicator apparatus and method for coupling RF power to a plasma in a plasma chamber. The apparatus comprises an inner conductor and one or two outer conductors. The main portion of each of the one or two outer conductors includes a plurality of apertures that extend between an inner surface and an outer surface of the outer conductor.
Abstract:
A transmission line RF applicator apparatus and method for coupling RF power to a plasma in a plasma chamber. The apparatus comprises an inner conductor and one or two outer conductors. The main portion of each of the one or two outer conductors includes a plurality of apertures that extend between an inner surface and an outer surface of the outer conductor.
Abstract:
Embodiments of the invention generally include shield frame assembly for use with a showerhead assembly, and a showerhead assembly having a shield frame assembly that includes an insulator that tightly fits around the perimeter of a showerhead in a vacuum processing chamber. In one embodiment, a showerhead assembly includes a gas distribution plate and a multi-piece frame assembly that circumscribes a perimeter edge of the gas distribution plate. The multi-piece frame assembly allows for expansion of the gas distribution plate without creating gaps which may lead to arcing. In other embodiments, the insulator is positioned to be have the electric fields concentrated at the perimeter of the gas distribution plate located therein, thereby reducing arcing potential.