摘要:
A memory card with electrostatic discharge (ESD) protection and a manufacturing method thereof are provided. The memory card includes a circuit board, a set of contacts, at least one chip and an ESD protection path. The signal paths of the board is not exposed at the edge of the circuit board. The ESD protection path for transmitting ESD current is disposed on the circuit board. Furthermore, a part of the ESD protection path extends to the edge of the circuit board.
摘要:
A method for manufacturing a stack chip package structure is disclosed. The method comprises: providing a first substrate; disposing a first chip on the first substrate; disposing a second chip and at least one second substrate on the first chip, wherein the second substrate is electrically connected to the first chip; bonding at least one first connecting wire connected between the second chip and the second substrate; bonding at least one second connecting wire connected between the first substrate and the second substrate; and forming a package body on the first substrate to encapsulate the first chip, the second chip, the second substrate, the first connecting wire and the second connecting wire.
摘要:
A code tree of two-dimensional orthogonal variable spreading factor (2D-OVSF) code matrices for a multicarrier direct-sequence code-division multiple-access (MC-DS/CDMA) communications system is generated by providing two sets of 2×2 orthogonal matrices {A(1)(2×2), A(2)(2×2)} and {B(1)(2×2), B(2)(2×2)}. The first set of 2×2 matrices is used to generate a pair of sibling nodes in the code tree that respectively represent matrices A(1)(2×2α) and A(2)(2×2α) by iterating the relationship: A(1)(2×21+β)=[A(1)(2×2β)A(2)(2×2β)], The matrices A(1)(2×2α) and A(2)(2×2α) are A(2)(2×21+β)=[A(1)(2×2β)−A(2)(2×2β)]. used to generate a child node of one of the sibling nodes. The child node contains an M×N matrix, which is found by iterating the relationship: A(i−1)(O×P)=[B(1)(2×2){circle around (×)}A(i/2)(0/2×P/2)] where {circle around (×)} indicates a Kronecker product. A(i)(O×P)=[B(2)(2×2){circle around (×)}A(i/2)(0/2×P/2)],
摘要:
A slurry residence time enhancement system for a chemical mechanical polishing apparatus having a base, a platen on the base, a polishing pad on the platen and a polishing head over the polishing pad is disclosed. The system includes at least one slurry distribution unit having a slurry distribution member for positioning on the polishing pad. In operation of the CMP apparatus, the slurry distribution member redirects polishing slurry on the polishing pad to the polishing head. The system may alternatively or additionally include a rim for upward extension from the base and a seal for insertion between the platen and the polishing pad adjacent to the rim.
摘要:
A package structure includes a lead frame having a plurality of leads, each of which includes a first recession, at least a first device, and a plurality of solder joints respectively positioned in the first recessions for connecting the first device to the lead frame.
摘要:
A high-speed video signal processing system, which includes a reception end for receiving analog signals; a plurality of analog to digital converters coupled to the reception end for converting analog signals received from the reception end to digital signals according to control signals; and an interleaving controller coupled to the plurality of analog to digital converters for generating the control signals to selectively enable the plurality of analog to digital converters according to a predetermined sequence.
摘要:
A dispenser for a chemical-mechanical polishing (CMP) apparatus, includes a delivery arm disposed over a polishing pad of a CMP apparatus, at least a slurry delivery groove formed in the delivery arm and extending along a length of the delivery arm, and a plurality of first openings connected to the slurry delivery groove.
摘要:
An organic semiconductor infrared distance sensing apparatus and an organic infrared emitting apparatus thereof are disclosed. The organic semiconductor infrared distance sensing apparatus comprises an organic infrared emitting apparatus and an organic infrared receiving apparatus. The organic infrared emitting apparatus has a positive electrode layer and a negative electrode layer to form an electric field, and organic light emitting molecules are sandwiched between the two layers and correspond to the positive electrode layer and the negative electrode layer. Under a positive bias, a plurality of electrons and holes are respectively injected from electrodes and recombine with each other to emit photons. An infrared organic conversion layer absorbs and transfers the energy to infrared emitting molecules to emit infrared light. The organic infrared receiving apparatus receives the infrared light reflected by an obstacle to generate photocurrent which varies with distance, thereby sensing the distance between the obstacle and the apparatus.
摘要:
An organic-semiconductor-based infrared receiving device comprises an electrode layer having a positive layer and a negative layer to form an electric field, and a transport layer located between the positive and negative layers and having a first and a second predetermined material combined in a predetermined ratio. The energy of infrared light from a light source is received at an interface between the first and second materials. The thickness of the transport layer can be increased to enhance the light absorbance in the infrared light range to form electron-hole pairs, which are then parted to form a plurality of electrons and holes driven by the electric field to move to the negative layer and the positive layer, respectively, so that a predetermined photocurrent is generated.