摘要:
In one embodiment, a system includes a beam generator for directing at least one incident beam having a wavelength λ towards a periodic target having structures with a specific pitch p. A plurality of output beams are scattered from the periodic target in response to the at least one incident beam. The system further includes an imaging lens system for passing only a first and a second output beam from the target. The imaging system is adapted such that the angular separation between the captured beams, λ, and the pitch are selected to cause the first and second output beams to form a sinusoidal image. The system also includes a sensor for imaging the sinusoidal image or images, and a controller for causing the beam generator to direct the at least one incident beam towards the periodic target or targets, and for analyzing the sinusoidal image or images.
摘要:
An apparatus and method is provided for measuring photoresist parameters in situ is disclosed. Transmission and reflectivity detectors are used in a lithographic exposure tool to obtain in situ absorption parameters and reflectivity data. The absorption parameters and reflectivity data are used in a feedback control system that controls the exposure dose used in the lithographic tool.
摘要:
Disclosed are systems and methods for mitigating variances (e.g., critical dimension variances) on a patterned wafer are provided. In general, variances of a patterned wafer are predicted using one or more reticle fabrication and/or wafer processing models. The predicted variances are used to modify selected transparent portions of the reticle that is to be used to produce the patterned wafer. In a specific implementation, an optical beam, such as a femto-second laser, is applied to the reticle at a plurality of embedded positions, and the optical beam is configured to form specific volumes of altered optical properties within the transparent material of the reticle at the specified positions. These reticle volumes that are created at specific positions of the reticle result in varying amounts of light transmission or dose through the reticle at such specific positions so as to mitigate the identified variances on a wafer that is patterned using the modified reticle.
摘要:
Methods and systems are disclosed that provide multiple lithography exposures on a wafer, for example, using interference lithography and optical photolithography. Various embodiments may balance the dosage and exposure rates between the multiple lithography exposures to provide the needed exposure on the wafer. Other embodiments provide for assist features and/or may apply resolution enhancement to various exposures. In a specific embodiment, a wafer is first exposed using optical photolithography and then exposed using interference lithography.
摘要:
Methods and systems are disclosed that provide multiple lithography exposures on a wafer, for example, using interference lithography and optical photolithography. Various embodiments may balance the dosage and exposure rates between the multiple lithography exposures to provide the needed exposure on the wafer. Other embodiments provide for assist features and/or may apply resolution enhancement to various exposures. In a specific embodiment, a wafer is first exposed using optical photolithography and then exposed using interference lithography.
摘要:
An overlay method for determining the overlay error of a device structure formed during semiconductor processing is disclosed. The overlay method includes producing calibration data that contains overlay information relating the overlay error of a first target at a first location to the overlay error of a second target at a second location for a given set of process conditions. The overlay method also includes producing production data that contains overlay information associated with a production target formed with the device structure. The overlay method further includes correcting the overlay error of the production target based on the calibration data.
摘要:
Methods and apparatus for producing a semiconductor. A production reticle having a pattern that includes circuit features, phase shift target structures and overlay target structures is provided. The pattern is transferred multiple times across a test wafer surface for various focus levels to form a focus matrix. The pattern shift of the phase shift target structures is measured using an overlay metrology tool. The phase difference is calculated for each phase shift target structure, based on the pattern shift and the phase shift target structure focus level to qualify the phase difference of the production reticle. The pattern is transferred onto a production wafer when the phase difference meets desired limits. The pattern shift of the overlay target structures transferred to the production wafer is measured using an overlay metrology tool. The pattern placement error of the overlay target structures is calculated and the pattern placement error is qualified.