Abstract:
Photoelectric limit sensing assembly and system having photoelectric elements and logic arranged so that movement beyond a predetermined acceptable region is detected and which only permits movement in the proper direction to bring movement into the acceptable region.
Abstract:
A closed loop stepping motor control system provides seek reference position capability. A disc discriminator on the output shaft of the stepping motor includes a single aperture to indicate a unique step in a single revolution. A unique single revolution is indicated by the use of a mechanical slider mounted on a linearly moving carriage in conjunction with appropriate cutouts and photocells; alternatively a limit switch is used. Appropriate logic provides for stopping the stepping motor when the reference position has been reached.
Abstract:
Plural light sources are provided for directing ring patterns of light toward at least one reflective bump formed on and projecting from a first wafer surface of a semiconductor wafer. The intensity of light from the light sources may be varied and may be varied independently of one another. A method and apparatus for adjusting at least one pixel value is also disclosed.
Abstract:
A laser scribe system is disclosed for aligning a wafer on which circuits are deposited, and for controlling the motion of a chuck, supporting the wafer, so that kerfs are cut in the wafer between all the circuits. The chuck is movable along X and Y axes in a XY plane by two indexable stepping motors, with a laser providing a beam in a direction perpendicular to the XY plane. The system is operable in an Align mode in which the chuck is movable back and forth in the X axis and the chuck is rotatable about an axis perpendicular to the XY plane until streets, representing wafer space between circuits, are aligned in the X axis. The system automatically sequences through several scribing phases during which the chuck is moved automatically in the X and Y axes at optimum speed to cut kerfs in all the streets of the wafer.
Abstract:
A system is disclosed for determining the rotational orientation of an object. An image of the object is digitally captured. The digital image is filtered through an edge detection operation to enhance the edge information contained in the image. The filtered image is rotated through a series of incremental angles to produce a series of rotated images. Each rotated image is projected onto an x-axis and y-axis defined by pixel grid axes defined by the original image. The projection of the rotated images produces projected pixel counts formed by the summation of pixel value differences of the x-axis and y-axis on the projected image. For each rotated image, a score corresponding to the sum of the difference of gray-scale values for adjacent projected pixels is computed. The scores for the projections of each rotated image are plotted on a score-angle graph. A curve which includes the highest score and the neighboring next highest scores is interpolated to determine the peak score. The peak score corresponds to the scene angle of the object relative to the x-axis and y-axis defined by the original image.