摘要:
The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 3.0 seconds or less, and/or having a clinically low Total System Error.
摘要:
The present invention provides novel osmium-based electrochemical species for the detection of wide variety of analytes using immunological techniques. The present invention also provides diagnostic kits and test sensors supporting electrode structures that can be used with the osmium-based electrochemical species. The test sensor can be fabricated to support interdigitated arrays of electrodes that have been designed to provide amplification of the electrical signal amplification desired to analyze analytes that may be present at low concentrations.
摘要:
The present invention provides novel osmium-based electrochemical species for the detection of wide variety of analytes using immunological techniques. The present invention also provides diagnostic kits and test sensors supporting electrode structures that can be used with the osmium-based electrochemical species. The test sensor can be fabricated to support interdigitated arrays of electrodes that have been designed to provide amplification of the electrical signal amplification desired to analyze analytes that may be present at low concentrations.
摘要:
An electrochemical biosensor with electrode elements that possess smooth, high-quality edges. These smooth edges define gaps between electrodes, electrode traces and contact pads. Due to the remarkable edge smoothness achieved with the present invention, the gaps can be quite small, which provides marked advantages in terms of test accuracy, speed and the number of different functionalities that can be packed into a single biosensor. Further, the present invention provides a novel biosensor production method in which entire electrode patterns for the inventive biosensors can be formed all at one, in nanoseconds—without regard to the complexity of the electrode patterns or the amount of conductive material that must be ablated to form them.
摘要:
The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 2.0 seconds or less, and/or having a clinically low Total System Error.
摘要:
Non-aqueous, polymeric reagent film compositions for use with analytical test devices of the dry chemistry type are described. The film compositions are prepared from an organic solution of a copolymer formed by interaction of at least two monomers wherein(a) the first monomer is a hydroxylated acrylate of the general formula ##STR1## where R1 is hydrogen or, more preferably, methyl, and R2 is a hydroxyalkyl group having from 1 to 5 carbon atoms, and(b) the second monomer is a neutral acrylate of the general formula ##STR2## where R1 is hydrogen or, more preferably, methyl, and R3 is a substituted or unsubstituted alkyl group having from 1 to 8 carbon atoms.Preferably, a third monomer is also included which is an amine-containing acrylate of the general formula ##STR3## where R1 is hydrogen or, more preferably, methyl, and R4 is a substituted or unsubstituted aminoalkyl or glycidyl group having from 1 to 5 carbon atoms or a surfactant polyethylene glycol group having from 10 to 30 carbon atoms. The film further comprises at least one enzyme in powder form dispersed therein and, optionally, a chromogenic indicator. The film composition is especially useful for determining components in body fluids, for example, for detecting glucose in whole blood, by rapid techniques.
摘要:
An electrochemical biosensor test strip with four new features. The test strip includes an indentation for tactile feel as to the location of the strips sample application port. The sample application port leads to a capillary test chamber, which includes a test reagent. The wet reagent includes from about 0.2% by weight to about 2% by weight polyethylene oxide from about 100 kilodaltons to about 900 kilodaltons mean molecular weight, which makes the dried reagent more hydrophilic and sturdier to strip processing steps, such as mechanical punching, and to mechanical manipulation by the test strip user. The roof of the capillary test chamber includes a transparent or translucent window which operates as a “fill to here” line, thereby identifying when enough test sample (a liquid sample, such as blood) has been added to the test chamber to accurately perform a test. The test strip may further include a notch located at the sample application port. The notch reduces a phenomenon called “dose hesitation”.
摘要:
The present invention provides novel osmium-based electrochemical species for the detection of wide variety of analytes using immunological techniques. The present invention also provides diagnostic kits and test sensors supporting electrode structures that can be used with the osmium-based electrochemical species. The test sensor can be fabricated to support interdigitated arrays of electrodes that have been designed to provide amplification of the electrical signal amplification desired to analyze analytes that may be present at low concentrations.
摘要:
The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 2.0 seconds or less, and/or having a clinically low Total System Error.
摘要:
An electrochemical biosensor with electrode elements that possess smooth, high-quality edges. These smooth edges define gaps between electrodes, electrode traces and contact pads. Due to the remarkable edge smoothness achieved with the present invention, the gaps can be quite small, which provides marked advantages in terms of test accuracy, speed and the number of different functionalities that can be packed into a single biosensor. Further, the present invention provides a novel biosensor production method in which entire electrode patterns for the inventive biosensors can be formed all at one, in nanoseconds—without regard to the complexity of the electrode patterns or the amount of conductive material that must be ablated to form them.