Abstract:
A vertical pole (2) holds plant growing containers (3, 50, 54), at multiple heights. Some containers may be mounted at a given height (H1-H9) in a circular array around the pole. Each container may occupy a V-shaped region about the pole in a top view. The pole may be moveable by a conveyor system (4, 5). The pole may have a fluid reservoir (30), and a fluid distribution system (31-35) extending from the fluid reservoir to plant growing containers at different vertical locations on the pole. Each plant growing container may integrate a soil containment portion (51), a bottom drain portion (61) that collects fluid draining through the soil, and a bypass drain portion (64, 70, 72, 75, 79), that interconnects with higher and lower like containers on the pole and bypasses the soil in the containers for rinsing the soils individually.
Abstract:
A conveyor system (4, 5) moves vertical poles (2) in an agricultural facility between a growing area (20) and a workstation (W). Each pole carries plant growing containers (3) at multiple levels (H1-H9). An irrigation reservoir (30) may be mounted atop each pole. Irrigation lines (31-33) from the reservoir may be individually metered (35) at each level to compensate for differing water pressure with height. Sensors (40) in the reservoir and at each level of the poles may provide a controller (36) with data input. The controller may impose different growing conditions in different areas of the facility, including vertically different grow areas (20A, 20B), and controls pole movements and locations selectively to provide a sequence of poles at the workstation ready to harvest on a demand schedule. The workstation may have multiple heights (W1, W2, W3) for tall poles that increase plant density per facility footprint.
Abstract:
A heat shield employed in semiconductor processing apparatus comprises a high performance insulation that has low thermal conductivity, such as, below the thermal conductivity of still air over a wide range of temperatures utilized in operation of the apparatus. As an example, the thermal conductivity of the insulation may be in the range of about 0.004 W/m·h to about 0.4 W/m·h over a temperature range of about 0° C. to about 600° C. or more. The deployment of the high performance heat shield reduces the power consumption necessary for the heater by as much as 20% to reach a desired processing temperature as compared to a case of heater power consumption required to reach the same desired temperature without the shield. Further, the heat shield significantly reduces the amount of undesired depositions from gas-entrained constituents on components in the chamber of the apparatus, particularly below or beyond the heat shield, by as much as 90% since the temperature drop is as much as ten orders of magnitude difference.
Abstract:
A substrate processing system includes a pedestal including a substrate supporting surface having a diameter that is greater than a diameter of a substrate to be processed by the substrate processing system. A first surface extends a first distance above the substrate supporting surface in a direction substantially perpendicular to the substrate supporting surface. The first distance is greater than or equal to one-half of a thickness of the substrate. A gap is defined between the first surface and an outer diameter of the substrate. A second surface extends a second distance from the first surface at an angle with respect to the first surface. The angle is greater than zero and less than ninety degrees. A third surface extends from the second surface and is substantially parallel to the substrate supporting surface. An etchant source directs etchant onto the substrate to etch the substrate.
Abstract:
This invention provides a showerhead and method for allowing reaction gases to immediately mix upon release from gas outlets and minimize deposits of unwanted contaminants on the tip of a gas outlet and faceplate of the showerhead. A post having a central opening extends into the faceplate for emitting a first gas and is directly and circumferentially surrounded by an annular opening for emitting a second gas. The post may be recessed from, flush with or extend a distance past a frontal surface of the faceplate. A plurality of apertures, for emitting the second gas, may circumferentially surround the annular opening. The annular opening releases the second gas at a pressure and velocity sufficient to intermix with first gas released from the post while simultaneously forcing any unreacted gas and gaseous mixtures away from the tip of the post and frontal surface of the faceplate, thereby avoiding depositing contaminants thereon.
Abstract:
A conveyor system (4, 5) moves vertical poles (2) in an agricultural facility between a growing area (20) and a workstation (W). Each pole carries plant growing containers (3) at multiple levels (H1-H9). An irrigation reservoir (30) may be mounted atop each pole. Irrigation lines (31-33) from the reservoir may be individually metered (35) at each level to compensate for differing water pressure with height. Sensors (40) in the reservoir and at each level of the poles may provide a controller (36) with data input. The controller may impose different growing conditions in different areas of the facility, including vertically different grow areas (20A, 20B), and controls pole movements and locations selectively to provide a sequence of poles at the workstation ready to harvest on a demand schedule. The workstation may have multiple heights (W1, W2, W3) for tall poles that increase plant density per facility footprint.
Abstract:
A conveyor system (4, 5) moves vertical poles (2) in an agricultural facility between a growing area (20) and a workstation (W). Each pole carries plant growing containers (3) at multiple levels (H1-H9). An irrigation reservoir (30) may be mounted atop each pole. Irrigation lines (31-33) from the reservoir may be individually metered (35) at each level to compensate for differing water pressure with height. Sensors (40) in the reservoir and at each level of the poles may provide a controller (36) with data input. The controller may impose different growing conditions in different areas of the facility, including vertically different grow areas (20A, 20B), and controls pole movements and locations selectively to provide a sequence of poles at the workstation ready to harvest on a demand schedule. The workstation may have multiple heights (W1, W2, W3) for tall poles that increase plant density per facility footprint.
Abstract:
The orientation of a wafer with respect to the surface of an electrolyte is controlled during an electroplating process. The wafer is delivered to an electrolyte bath along a trajectory normal to the surface of the electrolyte. Along this trajectory, the wafer is angled before entry into the electrolyte for angled immersion. A wafer can be plated in an angled orientation or not, depending on what is optimal for a given situation. Also, in some designs, the wafer's orientation can be adjusted actively during immersion or during electroplating, providing flexibility in various electroplating scenarios.
Abstract:
A heat shield employed in semiconductor processing apparatus comprises a high performance insulation that has low thermal conductivity, such as, below the thermal conductivity of still air over a wide range of temperatures utilized in operation of the apparatus. As an example, the thermal conductivity of the insulation may be in the range of about 0.004 W/m·h to about 0.4 W/m·h over a temperature range of about 0° C. to about 600° C. or more. The deployment of the high performance heat shield reduces the power consumption necessary for the heater by as much as 20% to reach a desired processing temperature as compared to a case of heater power consumption required to reach the same desired temperature without the shield. Further, the heat shield significantly reduces the amount of undesired depositions from gas-entrained constituents on components in the chamber of the apparatus, particularly below or beyond the heat shield, by as much as 90% since the temperature drop is as much as ten orders of magnitude difference.
Abstract:
The orientation of a wafer with respect to the surface of an electrolyte is controlled during an electroplating process. The wafer is delivered to an electrolyte bath along a trajectory normal to the surface of the electrolyte. Along this trajectory, the wafer is angled before entry into the electrolyte for angled immersion. A wafer can be plated in an angled orientation or not, depending on what is optimal for a given situation. Also, in some designs, the wafer's orientation can be adjusted actively during immersion or during electroplating, providing flexibility in various electroplating scenarios.