摘要:
The orientation of a wafer with respect to the surface of an electrolyte is controlled during an electroplating process. The wafer is delivered to an electrolyte bath along a trajectory normal to the surface of the electrolyte. Along this trajectory, the wafer is angled before entry into the electrolyte for angled immersion. A wafer can be plated in an angled orientation or not, depending on what is optimal for a given situation. Also, in some designs, the wafer's orientation can be adjusted actively during immersion or during electroplating, providing flexibility in various electroplating scenarios.
摘要:
The orientation of a wafer with respect to the surface of an electrolyte is controlled during an electroplating process. The wafer is delivered to an electrolyte bath along a trajectory normal to the surface of the electrolyte. Along this trajectory, the wafer is angled before entry into the electrolyte for angled immersion. A wafer can be plated in an angled orientation or not, depending on what is optimal for a given situation. Also, in some designs, the wafer's orientation can be adjusted actively during immersion or during electroplating, providing flexibility in various electroplating scenarios.
摘要:
The orientation of a wafer with respect to the surface of an electrolyte is controlled during an electroplating process. The wafer is delivered to an electrolyte bath along a trajectory normal to the surface of the electrolyte. Along this trajectory, the wafer is angled before entry into the electrolyte for angled immersion. A wafer can be plated in an angled orientation or not, depending on what is optimal for a given situation. Also, in some designs, the wafer's orientation can be adjusted actively during immersion or during electroplating, providing flexibility in various electroplating scenarios.
摘要:
The present invention provides apparatus and methods for controlling flow dynamics of a plating fluid during a plating process. The invention achieves this fluid control through use of a diffuser membrane. Plating fluid is pumped through the membrane; the design and characteristics of the membrane provide a uniform flow pattern to the plating fluid exiting the membrane. Thus a work piece, upon which a metal or other conductive material is to be deposited, is exposed to a uniform flow of plating fluid.
摘要:
An electroplating apparatus for filling recessed features on a semiconductor substrate includes an electrolyte concentrator configured for concentrating an electrolyte having Cu2+ ions to form a concentrated electrolyte solution that would have been supersaturated at 20° C. The electrolyte is maintained at a temperature that is higher than 20° C., such as at least at about 40° C. The apparatus further includes a concentrated electrolyte reservoir and a plating cell, where the plating cell is configured for electroplating with concentrated electrolyte at a temperature of at least about 40° C. Electroplating with electrolytes having Cu2+ concentration of at least about 60 g/L at temperatures of at least about 40° C. results in very fast copper deposition rates, and is particularly well-suited for filling large, high aspect ratio features, such as through-silicon vias.
摘要:
An electroplating system includes (a) a phosphorized anode having an average grain size of at least about 50 micrometers and (b) plating apparatus that separates the anode from the cathode and prevents most particles generated at the anode from passing to the cathode. The separation may be accomplished by interposing a microporous chemical transport barrier between the anode and cathode. The relatively few particles that are generated at the large grain phosphorized copper anode are prevented from passing into the cathode (wafer) chamber area and thereby causing a defect in the part.
摘要:
An electroplating apparatus for filling recessed features on a semiconductor substrate includes an electrolyte concentrator configured for concentrating an electrolyte having Cu2+ ions to form a concentrated electrolyte solution that would have been supersaturated at 20° C. The electrolyte is maintained at a temperature that is higher than 20° C., such as at least at about 40° C. The apparatus further includes a concentrated electrolyte reservoir and a plating cell, where the plating cell is configured for electroplating with concentrated electrolyte at a temperature of at least about 40° C. Electroplating with electrolytes having Cu2+ concentration of at least about 60 g/L at temperatures of at least about 40° C. results in very fast copper deposition rates, and is particularly well-suited for filling large, high aspect ratio features, such as through-silicon vias.
摘要:
Chemical etching methods and associated modules for performing the removal of metal from the edge bevel region of a semiconductor wafer are described. The methods and systems apply liquid etchant in a precise manner at the edge bevel region of the wafer, so that the etchant is applied on to the front edge, the side edge and the back edge. The etchant thus does not flow or splatter onto the active circuit region of the wafer. An edge bevel removal embodiment involving that is particularly effective at obviating streaking, narrowing the metal taper and allowing for subsequent chemical mechanical polishing, is disclosed.
摘要:
Chemical etching methods and associated modules for performing the removal of metal from the edge bevel region of a semiconductor wafer are described. The methods and systems apply liquid etchant in a precise manner at the edge bevel region of the wafer under viscous flow conditions, so that the etchant is applied on to the front edge area and flows over the side edge and onto the back edge in a viscous manner. The etchant thus does not flow or splatter onto the active circuit region of the wafer. An edge bevel removal embodiment involving that is particularly effective at obviating streaking, narrowing the metal taper and allowing for subsequent chemical mechanical polishing, is disclosed.
摘要:
In a copper electroplating apparatus having separate anolyte and catholyte portions, the concentration of anolyte components (e.g., acid or copper salt) is controlled by providing a diluent to the recirculating anolyte. The dosing of the diluent can be controlled by the user and can follow a pre-determined schedule. For example, the schedule may specify the diluent dosing parameters, so as to prevent precipitation of copper salt in the anolyte. Thus, precipitation-induced anode passivation can be minimized.