摘要:
Provided are gas storage medium, a gas storage apparatus having the same and a method thereof. The gas storage medium includes a plurality of material layers each having a variable valence, wherein each of the material layers includes redundant electrons that are not participated in chemical bonding.
摘要:
Provided is a bio-sensor chip. The bio-sensor chip includes a sensing part, a board circuit part, a channel part, and a cover. In the sensing part, a target material and a detection material interact with each other to detect the target material. The board circuit part is electrically connected to the sensing part. The channel part provides a solution material containing the target material into the sensing part. The cover is coupled to the board circuit part to cover the channel part and the sensing part.
摘要:
A biosensor using a nanodot and a method of manufacturing the same are provided. A silicon nanowire can be formed by a CMOS process to reduce manufacturing costs. In addition, an electrically charged nanodot is coupled to a target molecule to be detected, in order to readily change conductivity of the silicon nanowire, thereby making it possible to implement a biosensor capable of providing good sensitivity and being manufactured at a low cost.
摘要:
A memory device including a dielectric thin film having a plurality of dielectric layers and a method of manufacturing the same are provided. The memory device includes: a bottom electrode; at least one dielectric thin film disposed on the bottom electrode and having a plurality of dielectric layers with different charge trap densities from each other; and an top electrode disposed on the dielectric thin film. Therefore, a memory device, which can be readily manufactured by a simple process and can be highly integrated using its simple structure, can be provided.
摘要:
Provided are a gold-silver alloy nanoparticle chip, a method of fabricating the same and a method of detecting microorganisms using the same. The gold-silver alloy nanoparticle chip includes a hydrophilized glass substrate, a self-assembled monolayer formed on the glass substrate, and gold-silver alloy nanoparticles fixed on the self-assembled monolayer. The gold-silver alloy nanoparticle chip having such a structure enables microorganisms in a water purifier and tap water to be readily detected and enables detection efficiency to be enhanced.
摘要:
The present invention relates to a diagnostic kit for a respiratory disease that enables a preprocessing process with respect to a sample to be performed within a diagnostic kit when diagnosing respiratory disease using the diagnostic kit, and thereby enables all the operations starting from collecting the sample to verifying a diagnosis result to be automatically performed within the diagnostic kit. The diagnostic kit for a respiratory disease may perform a field diagnosis at anywhere without being restricted to a specific location, and even a general user may also easily obtain an accurate diagnosis result.
摘要:
Provided are an apparatus and method for detecting biomaterials. The apparatus for detecting the biomaterials includes a light source unit, a biomaterial reacting unit, and a detection unit detecting. The light source unit provides incident light. The biomaterial reacting unit includes a substrate and metal nanoparticles spaced from the substrate. The surface plasmon resonance phenomenon is induced on surfaces of the metal nanoparticles by the incident light. First detecting molecules specifically binding to target molecules are immobilized to the surfaces of the metal nanoparticles. The detection unit detects a resonance wavelength of emission light emitted from the metal nanoparticles by the surface plasmon resonance phenomenon.
摘要:
Provided is a method of immobilizing an active material on a surface of a substrate. The method including cleaning a substrate, functionalizing a surface of the substrate using a hydroxyl group, functionalizing the surface of the substrate at atmospheric pressure using a vaporized organic silane compound, and immobilizing an active material to an end of the surface of the substrate. Therefore, since evacuation or the use of carrier gas is not necessary, a uniform, high-density, single-molecular, silane compound film can be formed inexpensively, simply, and reproducibly, and an active material can be immobilized to the single-molecular silane compound film.
摘要:
Provided is a biosensor with a three-dimensional multi-layered structure, a method for manufacturing the biosensor, and a biosensing apparatus including the biosensor. The biosensing apparatus includes: a chamber having an inlet through which a fluid containing a biomaterial enters and an outlet through which the fluid exits; and a plurality of biosensors inserted and fixed in the chamber. Each biosensor includes: a support unit having a fluid channel through which a fluid containing a biomaterial flows; and a sensing unit disposed on the support unit in such a way that the sensing unit is exposed three-dimensionally in the fluid channel of the support unit, the sensing unit being surface-treated with a reactive material that is to react with the biomaterial flowing through the fluid channel.
摘要:
Disclosed herein is a method of fabricating nano-components using nanoplates, including the steps of: printing a grid on a substrate using photolithography and Electron Beam Lithography; spraying an aqueous solution dispersed with nanoplates onto the grid portion to position the nanoplates on the substrate; depositing a protective film of a predetermined thickness on the substrate and the nanoplates positioned on the substrate; ion-etching the nanoplates deposited with the protective film by using a Focused Ion Beam (FIB) or Electron Beam Lithography; and eliminating the protective film remaining on the substrate using a protective film remover after the ion-etching of the nanoplates, and a method of manufacturing nanomachines or nanostructures by transporting such nano-components using a nano probe and assembling with other nano-components. The present invention makes it possible to fabricate the high-quality nano-components in a more simple and easier manner at a lower cost, as compared to other conventional methods. Further, the present invention provides a method of implementing nanomachines through combination of such nano-components and biomolecules, etc.