Abstract:
Disclosed herein are magnesium-doped rare earth nitride materials, some of which are semi-insulating or insulating. Also disclosed are methods for preparing the materials. The magnesium-doped rare earth nitride materials may be useful in the fabrication of, for example, spintronics, electronic and optoelectronic devices.
Abstract:
A switchable magnetic device comprising a first ferromagnetic material or layer comprising or consisting of a first rare earth nitride alloy, the first rare earth nitride alloy including at least two lanthanide species; a second ferromagnetic material or layer comprising or consisting of a second rare earth nitride alloy, the second rare earth nitride alloy including at least two lanthanide species; a blocking material or layer located between the first and second ferromagnetic materials or layers. The first and second ferromagnetic materials or layers have different coercive fields to permit independent control of a magnetic alignment of the first and second ferromagnetic materials or layers; and a remanent magnetic moment of the first ferromagnetic material or layer and a remanent magnetic moment of the second ferromagnetic material or layer spatially restrict or confine a peripheral magnetic field generated when the first and second ferromagnetic materials or layers are in an anti-aligned magnetic state to permit contrasting peripheral magnetic fields to be generated when the first and second ferromagnetic materials or layers are in anti-aligned and aligned magnetic states.
Abstract:
Disclosed herein are magnetic materials comprising rare earth nitrides and, more particularly, magnetic materials comprising multilayer-structured materials comprising one relatively soft and one relatively hard magnetic layer. The magnetic materials comprise a first ferromagnetic layer, a second ferromagnetic layer, and a blocking layer between and in contact with each of the first 5 and second ferromagnetic layers. The first and second ferromagnetic layers have different coercive fields. The first ferromagnetic layer comprises a first rare earth nitride material and the second ferromagnetic layer comprises a second rare earth nitride material. Also disclosed are methods for preparing the materials. The materials are useful in the fabrication of devices, such as GMR magnetic field sensors, MRAM devices, TMR magnetic field sensors, and magnetic 10 tunnel junctions.
Abstract:
Structure or device comprising a hexagonal crystal layer or hexagonal crystal substrate, and a (001)-oriented rare earth nitride epitaxial layer on the hexagonal crystal layer or hexagonal crystal substrate.
Abstract:
Structure or device comprising a hexagonal crystal layer or hexagonal crystal substrate, and a (001)-oriented rare earth nitride epitaxial layer on the hexagonal crystal layer or hexagonal crystal substrate.
Abstract:
Disclosed herein are magnesium-doped rare earth nitride materials, some of which are semi-insulating or insulating. Also disclosed are methods for preparing the materials. The magnesium-doped rare earth nitride materials may be useful in the fabrication of, for example, spintronics, electronic and optoelectronic devices.
Abstract:
Disclosed herein are magnetic materials comprising rare earth nitrides and, more particularly, magnetic materials comprising multilayer-structured materials comprising one relatively soft and one relatively hard magnetic layer. The magnetic materials comprise a first ferromagnetic layer, a second ferromagnetic layer, and a blocking layer between and in contact with each of the first 5 and second ferromagnetic layers. The first and second ferromagnetic layers have different coercive fields. The first ferromagnetic layer comprises a first rare earth nitride material and the second ferromagnetic layer comprises a second rare earth nitride material. Also disclosed are methods for preparing the materials. The materials are useful in the fabrication of devices, such as GMR magnetic field sensors, MRAM devices, TMR magnetic field sensors, and magnetic 10 tunnel junctions.