摘要:
In one aspect, a method of fabricating a semiconductor device is provided. The method includes forming at least one capping layer over epitaxial source/drain regions of a PMOS device, forming a stress memorization (SM) layer over the PMOS device including the at least one capping layer and over an adjacent NMOS device, and treating the SM layer formed over the NMOS and PMOS devices to induce tensile stress in a channel region of the NMOS device.
摘要:
Methods of fabricating semiconductor devices are provided. A substrate having active patterns and isolating layer patterns is prepared. Each of the isolating layer patterns has an upper surface higher than that of each of the active patterns. A spacer layer having a uniform thickness is formed on the substrate. The spacer layer is etched to form a spacer on a sidewall of each of the isolating layer patterns. A gate structure is formed on each of the active patterns. A selective epitaxial growth (SEG) process is performed on the active patterns having the gate structure to form isolated epitaxial layers that have upper surfaces higher than those of the isolating layer patterns, on the active patterns. Related semiconductor devices are also provided.
摘要:
In various embodiments, the present disclosure may provide a storage node. In various implementations, the storage node may include a bottom electrode having a non-planar bottom surface that conforms with and is connected to a non-planar top surface of a diode electrode of a memory device. The storage node may further include a phase change layer on top of a bottom diode and a top electrode on a top surface of a phase change layer.
摘要:
A semiconductor device with a stack type capacitor having a lower electrode formed of an aluminum-doped metal, and a manufacturing method thereof are provided. The semiconductor device includes: a semiconductor substrate having a gate structure and an active region; an interlayer dielectric film formed on the active region; a lower electrode formed of a metal containing aluminum on the interlayer dielectric film; a dielectric layer formed on the lower electrode; an upper electrode formed on the dielectric layer; and a plug formed in the interlayer dielectric film to electrically connect the active region with the lower electrode. The method includes: forming a gate structure and an active region on a semiconductor substrate; forming an interlayer dielectric film on the resultant semiconductor substrate; forming a plug in the interlayer dielectric film to electrically connect with the active region; forming a mold oxidation layer on the plug and the interlayer dielectric film; patterning the mold oxidation layer with a predetermined pattern and forming a lower electrode of material containing aluminum on the plug; and sequentially forming a dielectric layer and an upper electrode on the lower electrode.
摘要:
Methods of fabricating semiconductor devices are provided. A substrate having active patterns and isolating layer patterns is prepared. Each of the isolating layer patterns has an upper surface higher than that of each of the active patterns. A spacer layer having a uniform thickness is formed on the substrate. The spacer layer is etched to form a spacer on a sidewall of each of the isolating layer patterns. A gate structure is formed on each of the active patterns. A selective epitaxial growth (SEG) process is performed on the active patterns having the gate structure to form isolated epitaxial layers that have upper surfaces higher than those of the isolating layer patterns, on the active patterns. Related semiconductor devices are also provided.
摘要:
Provided is an aluminum (Al) doped charge trap layer, a non-volatile memory device and methods of fabricating the same. The charge trap layer may include a plurality of silicon nano dots that trap charges and a silicon oxide layer that covers the silicon nano dots, wherein the charge trap layer is doped with aluminum (Al). The non-volatile memory device may include a substrate including a source and a drain on separate regions of the substrate, a tunneling film on the substrate contacting the source and the drain, the charge trap layer according to example embodiments, a blocking film on the charge trap layer, and a gate electrode on the blocking film.
摘要:
A semiconductor device and a manufacturing method thereof for preventing gate electrode degradation and gate current leakage. The semiconductor device includes a gate insulating layer including an H-k (high dielectric) material on a semiconductor substrate, a barrier metal layer including a metal alloy on the gate insulating layer, and a gate electrode layer formed on the barrier metal layer. Illustratively, the barrier metal layer includes at least one of TaAlN (tantalum aluminum nitride) or TiAlN (titanium aluminum nitride). The barrier metal layer can include an oxidation-resistant material so that oxidation of the barrier metal layer is prevented during a subsequent annealing of the semiconductor device in an oxygen atmosphere. Thus, degradation of a gate electrode is prevented, and gate current leakage due to degradation of the gate electrode is prevented.
摘要:
A semiconductor device with a stack type capacitor having a lower electrode formed of an aluminum-doped metal, and a manufacturing method thereof are provided. The semiconductor device includes: a semiconductor substrate having a gate structure and an active region; an interlayer dielectric film formed on the active region; a lower electrode formed of a metal containing aluminum on the interlayer dielectric film; a dielectric layer formed on the lower electrode; an upper electrode formed on the dielectric layer; and a plug formed in the interlayer dielectric film to electrically connect the active region with the lower electrode. The method includes: forming a gate structure and an active region on a semiconductor substrate; forming an interlayer dielectric film on the resultant semiconductor substrate; forming a plug in the interlayer dielectric film to electrically connect with the active region; forming a mold oxidation layer on the plug and the interlayer dielectric film; patterning the mold oxidation layer with a predetermined pattern and forming a lower electrode of material containing aluminum on the plug; and sequentially forming a dielectric layer and an upper electrode on the lower electrode.
摘要:
A stack-type capacitor includes a lower electrode, a dielectric layer formed on the lower electrode, and an upper electrode formed on the dielectric layer, wherein the lower electrode includes a first metal layer having a cylindrical shape and a second metal layer filled in the first metal layer. In the capacitor, an amount of oxygen included in the lower electrode is decreased to suppress oxidation of a TiN layer. Thus, a stable stack-type capacitor may be formed, which increases greatly the performance of highly integrated DRAMs.
摘要:
Methods of fabricating semiconductor devices are provided. A substrate having active patterns and isolating layer patterns is prepared. Each of the isolating layer patterns has an upper surface higher than that of each of the active patterns. A spacer layer having a uniform thickness is formed on the substrate. The spacer layer is etched to form a spacer on a sidewall of each of the isolating layer patterns. A gate structure is formed on each of the active patterns. A selective epitaxial growth (SEG) process is performed on the active patterns having the gate structure to form isolated epitaxial layers that have upper surfaces higher than those of the isolating layer patterns, on the active patterns. Related semiconductor devices are also provided.