Abstract:
The invention relates to a catalyst for decomposing nitrous oxide, which is [1] a catalyst comprising a support having supported thereon aluminum, magnesium and rhodium, [2] a catalyst comprising an alumina support having supported thereon magnesium and rhodium, [3] a catalyst comprising a support having supported thereon rhodium, the support comprising a spinel crystalline composite oxide formed by magnesium and at least a part of aluminum, [4] a catalyst comprising a support having supported thereon aluminum, rhodium and at least one metal selected from zinc, iron, manganese and nickel, [5] a catalyst comprising an alumina support having supported thereon rhodium and at least one metal selected from zinc, iron, manganese and nickel, or [6] a catalyst comprising a support having supported thereon rhodium, the support comprising a spinel crystalline composite oxide formed by at least a part of aluminum and the at least one metal selected from zinc, iron, manganese and nickel. The catalyst is not easily deteriorated in the activity due to moisture, favored with low-temperature decomposition activity and capable of reducing the amount of NOx generated to the allowable concentration or less. The invention also relates to a process for producing the catalyst and to a method for decomposing nitrous oxide.
Abstract translation:本发明涉及一种用于分解一氧化二氮的催化剂,其是[1]一种催化剂,其包含负载有铝,镁和铑的载体,[2]一种催化剂,其包含负载有镁和铑的氧化铝载体,[3] a 催化剂包括其上负载有铑的载体,所述载体包含由镁和至少一部分铝形成的尖晶石结晶复合氧化物,[4]催化剂,其包含负载有铝,铑和至少一种选自锌的金属的催化剂 ,铁,锰和镍,[5]催化剂,其包含负载有铑的氧化铝载体和选自锌,铁,锰和镍的至少一种金属的催化剂,或[6]一种催化剂,其包含其上负载有铑的载体, 载体,其包含由至少一部分铝和选自锌,铁,锰和镍中的至少一种金属形成的尖晶石结晶复合氧化物。 催化剂不易由于水分而导致的活性降低,有利于低温分解活性,并且能够将生成的NOx的量减少至允许浓度或更低。 本发明还涉及一种生产该催化剂的方法和一种分解一氧化二氮的方法。
Abstract:
A process for decomposing nitrogen fluoride, comprising contacting gaseous nitrogen fluoride with a solid reactive agent for decomposition at 200.degree. C. or more to fix the fluorine component in the nitrogen fluoride to the reactive agent and at the same time control generation of nitrogen oxides, fluorocarbon and carbon monoxide as by-products, the reactive agent containing elemental carbon; aluminum compound, iron compound, manganese compound and/or alkaline earth metal; alkali metal compound; and nickel compound, tin compound and/or copper compound.
Abstract:
To provide a process and an apparatus for treating a waste anesthetic gas containing a volatile anesthetic and nitrous oxide discharged from an operating room by introducing the gas into an adsorbing cylinder filled with an adsorbent, where the volatile anesthetic contained in the waste anesthetic gas is adsorbed and thereby removed, and successively introducing the gas into a catalyst layer filled with a nitrous oxide decomposition catalyst, where nitrous oxide is decomposed into nitrogen and oxygen. By using the process and the apparatus for treating a waste anesthetic gas of the present invention, a volatile anesthetic having a possibility of destroying the ozone layer or nitrous oxide as a global warming gas can be made harmless while preventing the release into atmosphere.
Abstract:
Tetrafluorosilane is produced by a process comprising a step (1) of heating a hexafluorosilicate, a step (2-1) of reacting a tetrafluorosilane gas containing hexafluorodisiloxane produced in the step (1) with a fluorine gas, a step (2-2) of reacting a tetrafluorosilane gas containing hexafluorodisiloxane produced in the step (1) with a high valent metal fluoride, or a step (2-1) of reacting a tetrafluorosilane gas containing hexafluorodisiloxane produced in the step (1) with a fluorine gas and a step (2-3) of reacting a tetrafluorosilane gas produced in the step (2-1) with a high valent metal fluoride. Further, impurities in high-purity tetrafluorosilane are analyzed.
Abstract:
A method for decomposing nitrogen fluoride or sulfur fluoride, comprising contacting gaseous nitrogen fluoride or sulfur fluoride with a solid reagent comprising elemental carbon, one or more of the alkaline earth metal elements and optionally one or more of the alkali metal elements, to fix the fluorine component in the nitrogen fluoride or sulfur fluoride in said reagent.
Abstract:
The present invention intends to provide an agent and a method for removing harmful gas, which exhibits high harm-removing ability per unit volume for harmful halogen-containing gas contained in the exhaust gas from the etching or cleaning step in the manufacturing process of a semiconductor device, and which is inexpensive. The invention is characterized by that halogen-containing gas is removed using a harm-removing agent comprising a specific iron oxide, an alkaline earth metal compound and activated carbon in the specific amount. In the case where the exhaust gas contains halogen gas such as chlorine or a gas such as sulfur dioxide, the gas is rendered harmless by using in combination a harm-removing agent comprising activated carbon or zeolite.
Abstract:
A reactive agent for decomposing fluorine compounds comprising alumina and an alkaline earth metal compound; a process for decomposing fluorine compounds, comprising contacting the reactive agent with a fluorine compound at a temperature of 200° C. or more; and a process for manufacturing a semiconductor device, comprising an etching or cleaning and a decomposing using the reactive agent.
Abstract:
Fluorocarbons including perfluorocarbons and hydrofluorocarbons are highly efficiently decomposed by contacting a gaseous fluorocarbon with a reagent comprising carbon and an alkaline earth metal or carbon, an alkaline earth metal and an alkali metal at an elevated temperature, the decomposed halogen being fixed to the reagent.
Abstract:
Fluorocarbons including perfluorocarbons and hydrofluorocarbons are highly efficiently decomposed by contacting a gaseous fluorocarbon with a reagent comprising carbon and an alkaline earth metal or carbon, an alkaline earth metal and an alkali metal at an elevated temperature, the decomposed halogen being fixed to the reagent.
Abstract:
A step (1) of heating a fluoronickel compound to release a fluorine gas, a step (2) of allowing a fluorine gas to be occluded into a fluorinated compound, and a step (3) of heating the fluoronickel compound and reducing an inner pressure are conducted in a container, respectively, at least once, and thereafter a high-purity fluorine gas is obtained in the step (1). Also, a step (5) of heating a fluoronickel compound and reducing an inner pressure and a step (6) of allowing a fluorine gas reduced in a hydrogen fluoride content to be occluded into the fluoronickel compound are conducted in a container having a fluorinated layer formed on its surface, respectively, at least once, the step (5) is further conducted, and thereafter a fluorine gas containing impurity gases is contacted with the fluoronickel compound to fix and remove the fluorine gas, and the impurities are analyzed by gas chromatography.