摘要:
A semiconductor light-emitting device includes substrate (3), a plurality of light-emitting-element-layers (10a, 10b, 10c, . . . ) of semiconductor material formed on the substrate (3) so as to be isolated from each other and having a wider band gap than the substrate (3), and phosphors (15a, 15b, 15c, . . . ) converting wavelengths of light from the light-emitting-element-layers (10a, 10b, 10c, . . . ) into other wavelengths.
摘要:
An LED comprising a light-generating semiconductor region having an active layer sandwiched between two confining layers of opposite conductivity types. A cathode is arranged centrally on one of the opposite major surfaces of the semiconductor region from which is emitted the light. An array of discrete gold regions are formed via transition metal regions on the other major surface of the semiconductor region at which is exposed one of the confining layers which is of n-type AlGaInP semiconductor material. The gold is thermally diffused into the confining layer via the transition metal regions at a temperature less than the eutectic point of gold and gallium, thereby creating an array of ohmic contact regions of alloyed or intermingled gold and gallium, which are less absorptive of light than their conventional counterparts, to a thickness of 20 to 1000 angstroms. After removing the transition metal regions and gold regions from the surface of the light-generating semiconductor region, a reflective layer of aluminum is formed so as to cover both the ohmic contact regions and the exposed surface portions of the AlGaInP confining layer. An electroconductive base-plate of doped silicon is then bonded to the reflective layer.
摘要:
An array of LEDs are grown by epitaxy on row-connecting conductor strips extending in parallel spaced relationship to one another on the surface of a semiconductor substrate and are thereby electrically interconnected in rows. The row-connecting conductor strips are formed by ion implantation of a p-type dopant into parts of an n-type silicon substrate. Column-connecting conductor strips extend over the light-emitting surfaces of the LEDs for electrically interconnecting them in columns. The LEDs are lit up individually by voltage application between one of the row-connecting conductor strips and one of the column-connecting conductor strips.
摘要:
A light emitting diode has a semiconductor region for production of light. The semiconductor region is a lamination of two complementary layers, an n-type semiconductor layer, an active layer, a p-type semiconductor layer, another complementary layer, and an ohmic contact layer, in that order from a first major surface of the semiconductor layer, from which the light is emitted, toward a second. A reflective metal layer covers the second major surface of the semiconductor region via a transparent layer for reflecting the light that has traveled through the transparent layer from the semiconductor region. The transparent layer serves to prevent the semiconductor region and the reflective layer from alloying by heat treatments during the manufacture of the LED.
摘要:
In a semiconductor light emitting element, multiple bosses having a cylindrical shape and dispersed like islands, and recesses are formed on the upper surface of a window layer. A contact electrode is formed on the upper surface of the bosses. A transparent dielectric film is formed in the recesses. A transparent conductor film is formed on the transparent dielectric film and the contact electrode.
摘要:
A light emitting device includes: a first semiconductor region; a second semiconductor region and third semiconductor region which are provided in the first semiconductor region; a first semiconductor light emitting element of which first electrode is electrically connected to a main surface of the second semiconductor region; a second semiconductor light emitting element of which third electrode is electrically connected to a main surface of the third semiconductor region; and a conductor which electrically connects the second electrode of the first semiconductor light emitting element and the third semiconductor region, and which electrically connects the second electrode and the third electrode through the third semiconductor region. In the light emitting device, the semiconductor light emitting elements are connected in series, and are directly connected to a power source.
摘要:
In a semiconductor light emitting element, multiple bosses having a cylindrical shape and dispersed like islands, and recesses are formed on the upper surface of a window layer. A contact electrode is formed on the upper surface of the bosses. A transparent dielectric film is formed in the recesses. A transparent conductor film is formed on the transparent dielectric film and the contact electrode.
摘要:
An LED comprises a semiconductor region including an active layer for generating light. An anode is arranged centrally on one of the opposite major surfaces of the semiconductor region from which is emitted the light. A reflective metal layer is bonded to the other major surface of the light-generating semiconductor region via an ohmic contact layer. Sufficiently thin to permit the passage of light therethrough, the ohmic contact layer is formed in an open-worked pattern to leave exposed part of the second major surface of the semiconductor region. A transparent, open-worked anti-alloying layer is interposed between the light-generating semiconductor region and the reflective metal layer, covering that part of the second major surface of the light-generating semiconductor region which is left exposed by the ohmic contact layer. The anti-alloying layer prevents the light-generating semiconductor region and reflective metal layer from alloying during heat treatments conducted in the curse of LED manufacture. A greater percentage of the light from the light-generating semiconductor region is reflected by the reflective metal layer for emission from the first major surface of the light-generating semiconductor region than in the absence of the anti-alloying layer.
摘要:
Provided between a window layer and a protection layer is a light transmissive layer having a refraction index which is between the refraction indexes of the window layer and protection layer. The refraction index n2 of the light transmissive layer is, for example, within ±20% of the geometric average of the refraction indexes of the window layer and protection layer. The thickness T of the light transmissive layer satisfies {(λ/4n2)×(2m+1)−(λ/8n2)≦T≦(λ/4n2)×(2m+1)+(λ/8n2)} where λ represents the wavelength of emitted light and m represents a positive integer not smaller than 0.
摘要:
A light emitting diode has a semiconductor region for production of light. The semiconductor region is a lamination of two complementary layers, an n-type semiconductor layer, an active layer, a p-type semiconductor layer, another complementary layer, and an ohmic contact layer, in that order from a first major surface of the semiconductor layer, from which the light is emitted, toward a second. A reflective metal layer covers the second major surface of the semiconductor region via a transparent layer for reflecting the light that has traveled through the transparent layer from the semiconductor region. The transparent layer serves to prevent the semiconductor region and the reflective layer from alloying by heat treatments during the manufacture of the LED.