摘要:
An integrated circuit device, e.g., a memory device, includes a substrate, a first insulation layer on the substrate, and a contact pad disposed in the first insulation layer in direct contact with the substrate. A second insulation layer is disposed on the first insulation layer. A conductive pattern, e.g., a damascene bit line, is disposed in the second insulation layer. A conductive plug extends through the second insulation layer to contact the contact pad and is self-aligned to the conductive pattern. An insulation film may separate the conductive pattern and the conductive plug. A glue layer may be disposed between the conductive pattern and the second insulation layer. The device may further include a third insulation layer on the second insulation layer and the conductive pattern, and the conductive plug may extend through the second and third insulation layers.
摘要:
An integrated circuit device, e.g., a memory device, includes a substrate, a first insulation layer on the substrate, and a contact pad disposed in the first insulation layer in direct contact with the substrate. A second insulation layer is disposed on the first insulation layer. A conductive pattern, e.g., a damascene bit line, is disposed in the second insulation layer. A conductive plug extends through the second insulation layer to contact the contact pad and is self-aligned to the conductive pattern. An insulation film may separate the conductive pattern and the conductive plug. A glue layer may be disposed between the conductive pattern and the second insulation layer. The device may further include a third insulation layer on the second insulation layer and the conductive pattern, and the conductive plug may extend through the second and third insulation layers.
摘要:
An integrated circuit device, e.g., a memory device, includes a substrate, a first insulation layer on the substrate, and a contact pad disposed in the first insulation layer in direct contact with the substrate. A second insulation layer is disposed on the first insulation layer. A conductive pattern, e.g., a damascene bit line, is disposed in the second insulation layer. A conductive plug extends through the second insulation layer to contact the contact pad and is self-aligned to the conductive pattern. An insulation film may separate the conductive pattern and the conductive plug. A glue layer may be disposed between the conductive pattern and the second insulation layer. The device may further include a third insulation layer on the second insulation layer and the conductive pattern, and the conductive plug may extend through the second and third insulation layers.
摘要:
Methods for depositing a metal layer on an integrated circuit device comprising providing a transition metal precursor, carrier gas and hydrogen gas to a deposition chamber such that the partial pressure of the precursor and carrier gas exceeds about 0.25 Torr and the partial pressure of hydrogen gas exceeds about 2.5 Torr are disclosed. Methods of forming a cobalt layer on an integrated circuit device are also disclosed.
摘要:
The present invention provides methods of forming cobalt layers on a structure comprising forming a preliminary cobalt layer on a semiconductor substrate by introducing an organic metal precursor onto the semiconductor substrate and treating a surface of the preliminary cobalt layer under an atmosphere of a hydrogen-containing gas to remove impurities contained in the preliminary cobalt layer. Compositions of cobalt layers are also provided. Further provided are semiconductor devices comprising cobalt layers provided herein.
摘要:
The present invention provides methods for forming cobalt silicide layers, including introducing a vaporized cobalt precursor onto a silicon substrate to form a cobalt layer. The vaporized cobalt precursor has the formula Co2(CO)6(R1—C≡C—R2), wherein R1 is H or CH3, and R2 is H, t-butyl, methyl or ethyl. The silicon substrate is thermally treated so that silicon is reacted with cobalt to form a cobalt silicide layer. Methods for manufacturing semiconductor devices including the cobalt silicide layers described herein and such devices are also provided.
摘要:
The present invention provides methods of forming cobalt layers on a structure comprising forming a preliminary cobalt layer on a semiconductor substrate by introducing an organic metal precursor onto the semiconductor substrate and treating a surface of the preliminary cobalt layer under an atmosphere of a hydrogen-containing gas to remove impurities contained in the preliminary cobalt layer. Compositions of cobalt layers are also provided. Further provided are semiconductor devices comprising cobalt layers provided herein.
摘要:
The present invention provides methods for forming cobalt silicide layers, including introducing a vaporized cobalt precursor onto a silicon substrate to form a cobalt layer. The vaporized cobalt precursor has the formula Co2(CO)6(R1—C≡C—R2), wherein R1 is H or CH3, and R2 is H, t-butyl, methyl or ethyl. The silicon substrate is thermally treated so that silicon is reacted with cobalt to form a cobalt silicide layer. Methods for manufacturing semiconductor devices including the cobalt silicide layers described herein and such devices are also provided.
摘要:
The present invention provides methods for forming cobalt silicide layers, including introducing a vaporized cobalt precursor onto a silicon substrate to form a cobalt layer. The vaporized cobalt precursor has the formula Co2(CO)6(R1—C≡C—R2), wherein R1 is H or CH3, and R2 is H, t-butyl, methyl or ethyl. The silicon substrate is thermally treated so that silicon is reacted with cobalt to form a cobalt silicide layer. Methods for manufacturing semiconductor devices including the cobalt silicide layers described herein and such devices are also provided.
摘要:
After a processing chamber is used to deposit a refractory metal film on a substrate, the chamber is plasma-treated with a gas including either nitrogen and/or hydrogen and in-situ cleaned. By plasma-treating the chamber with a gas including nitrogen, the refractory metal film that forms on interior surfaces of the chamber during substrate processing is nitrided. The nitrided refractory metal film can be removed from the chamber during the in-situ cleaning. By plasma-treating the chamber with a gas including hydrogen, reaction by-products generated in the chamber is diluted removed. The chamber may be plasma-treated in a gas ambient including both nitrogen and hydrogen. Also, the plasma treatment may be performed before and after the in-situ cleaning.