摘要:
A metal interconnection of a semiconductor device is fabricated by forming a dielectric pattern including a hole therein on a substrate, and forming a barrier metal layer in the hole and on the dielectric layer pattern outside the hole. At least some of the barrier metal layer is oxidized. An anti-nucleation layer is selectively formed on the oxidized barrier metal layer outside the hole that exposes the oxidized barrier metal layer in the hole. A metal layer then is selectively formed on the exposed oxidized barrier layer in the hole.
摘要:
A metal interconnection of a semiconductor device is fabricated by forming a dielectric pattern including a hole therein on a substrate, and forming a barrier metal layer in the hole and on the dielectric layer pattern outside the hole. At least some of the barrier metal layer is oxidized. An anti-nucleation layer is selectively formed on the oxidized barrier metal layer outside the hole that exposes the oxidized barrier metal layer in the hole. A metal layer then is selectively formed on the exposed oxidized barrier layer in the hole.
摘要:
In one embodiment, a nonvolatile memory device can be fabricated by forming first metallic dots on a charge storage film using first source gas, forming substitution dots on the charge storage film on which the first metallic dots are formed and forming second metallic dots using a second source gas.
摘要:
A semiconductor memory device and a method of fabricating the same are disclosed. The semiconductor memory device may include a conductive layer doped with impurities, a non-conductive layer on the conductive layer and undoped with impurities, an interlayer insulating film on the non-conductive layer and having a contact hole for exposing an upper surface of the non-conductive layer, an ohmic tungsten film on the contact hole, a lower portion of the ohmic tungsten film permeating the non-conductive layer to come in contact with the conductive layer, a tungsten nitride film on the contact hole on the ohmic tungsten film, and a tungsten film on the tungsten nitride film to fill the contact hole.
摘要:
An integrated circuit device, e.g., a memory device, includes a substrate, a first insulation layer on the substrate, and a contact pad disposed in the first insulation layer in direct contact with the substrate. A second insulation layer is disposed on the first insulation layer. A conductive pattern, e.g., a damascene bit line, is disposed in the second insulation layer. A conductive plug extends through the second insulation layer to contact the contact pad and is self-aligned to the conductive pattern. An insulation film may separate the conductive pattern and the conductive plug. A glue layer may be disposed between the conductive pattern and the second insulation layer. The device may further include a third insulation layer on the second insulation layer and the conductive pattern, and the conductive plug may extend through the second and third insulation layers.
摘要:
An integrated circuit device, e.g., a memory device, includes a substrate, a first insulation layer on the substrate, and a contact pad disposed in the first insulation layer in direct contact with the substrate. A second insulation layer is disposed on the first insulation layer. A conductive pattern, e.g., a damascene bit line, is disposed in the second insulation layer. A conductive plug extends through the second insulation layer to contact the contact pad and is self-aligned to the conductive pattern. An insulation film may separate the conductive pattern and the conductive plug. A glue layer may be disposed between the conductive pattern and the second insulation layer. The device may further include a third insulation layer on the second insulation layer and the conductive pattern, and the conductive plug may extend through the second and third insulation layers.
摘要:
A semiconductor memory device and a method of fabricating the same are disclosed. The semiconductor memory device may include a conductive layer doped with impurities, a non-conductive layer on the conductive layer and undoped with impurities, an interlayer insulating film on the non-conductive layer and having a contact hole for exposing an upper surface of the non-conductive layer, an ohmic tungsten film on the contact hole, a lower portion of the ohmic tungsten film permeating the non-conductive layer to come in contact with the conductive layer, a tungsten nitride film on the contact hole on the ohmic tungsten film, and a tungsten film on the tungsten nitride film to fill the contact hole.
摘要:
An integrated circuit device, e.g., a memory device, includes a substrate, a first insulation layer on the substrate, and a contact pad disposed in the first insulation layer in direct contact with the substrate. A second insulation layer is disposed on the first insulation layer. A conductive pattern, e.g., a damascene bit line, is disposed in the second insulation layer. A conductive plug extends through the second insulation layer to contact the contact pad and is self-aligned to the conductive pattern. An insulation film may separate the conductive pattern and the conductive plug. A glue layer may be disposed between the conductive pattern and the second insulation layer. The device may further include a third insulation layer on the second insulation layer and the conductive pattern, and the conductive plug may extend through the second and third insulation layers.
摘要:
In one embodiment, a nonvolatile memory device can be fabricated by forming first metallic dots on a charge storage film using first source gas, forming substitution dots on the charge storage film on which the first metallic dots are formed and forming second metallic dots using a second source gas.
摘要:
Methods for depositing a metal layer on an integrated circuit device comprising providing a transition metal precursor, carrier gas and hydrogen gas to a deposition chamber such that the partial pressure of the precursor and carrier gas exceeds about 0.25 Torr and the partial pressure of hydrogen gas exceeds about 2.5 Torr are disclosed. Methods of forming a cobalt layer on an integrated circuit device are also disclosed.