摘要:
The boosting voltage generating circuit of example embodiments may include a boosting level detection unit, a first boosting pump, and a second boosting pump. The boosting level detection unit may be configured to generate a target level detection signal and a margin level detection signal. The target level detection signal may have a logic state according to a level of a boosting voltage compared with a target voltage level, and the margin level detection signal may have a logic state according to a level of the boosting voltage compared with a margin voltage level, the margin voltage level being higher than the target voltage level. The first boosting pump may be controlled based on a target voltage level. The second boosting pump may be controlled based on a margin voltage level. According to the boosting voltage generating circuit of example embodiments, overshoot of the boosting voltage by the second boosting pump may remarkably decrease. Accordingly, the boosting voltage generating circuit of example embodiments may generate a stable boosting voltage under a wider range of supply voltage.
摘要:
An internal voltage generator for memory bank peripheral circuitry, a semiconductor memory device having the internal voltage generator, and a method for generating an internal voltage are provided. A switchable internal voltage generating circuit according to the present invention includes a control section and an internal voltage generating circuit. The control section generates a control signal in response to a bank activation command and a bank activation signal for enabling memory banks. The internal voltage generating circuit receives a reference voltage, and responds to the control signal to output an internal voltage equal to the reference voltage. The control signal is enabled when the bank activation command and the bank activation signal are concurrently enabled. The bank activation signal is generated in response to a bank address. The internal voltage can be supplied only to peripheral circuits of the banks selected by the bank address, thereby preventing unnecessary power consumption, effectively controlling the internal voltage, and always properly supplying the internal voltage.
摘要:
A semiconductor memory device with a cascaded burn-in test capability for a plurality of memory cell blocks. A delayed feedback signal is communicated between memory cell block selection circuits to create the cascade burn-in.
摘要:
A memory controller includes a controller input/output circuit configured to output a first command to read first data, and output a second command to read an error corrected portion of the first data. A memory device includes: an error detector, a data storage circuit and an error correction circuit. The error detector is configured to detect a number of error bits in data read from a memory cell in response to a first command. The data storage circuit is configured to store the read data if the detected number of error bits is greater than or equal to a first threshold value. The error correction circuit is configured to correct the stored data.
摘要:
A semiconductor memory device includes at least one sense amplifier, a controller and a sense amplifier driver. The sense amplifier includes a PMOS sense amplifier and an NMOS sense amplifier configured to be respectively activated in response to a first supply voltage and a second supply voltage, and to sense and amplify a voltage difference between a corresponding bit line pair. The controller is configured to set an operating mode in response to an external command, to control activation timing of a PMOS drive activation signal and an NMOS drive activation signal according to the set operating mode, and to output the PMOS drive activation signal and the NMOS drive activation signal. The sense amplifier driver is configured to apply the first and second supply voltages to the PMOS and NMOS sense amplifiers, respectively, in response to the PMOS drive activation signal and the NMOS drive activation signal.
摘要:
An internal voltage generator includes a control section and a switchable internal voltage generating circuit. The control section generates a control signal in response to a bank activation command and a bank activation signal for enabling memory banks. The internal voltage generating circuit receives a reference voltage, and responds to the control signal to output an internal voltage equal to the reference voltage. The control signal is enabled when the bank activation command and the bank activation signal are concurrently enabled. The bank activation signal is generated in response to a partial array self refresh (PASR) signal. The internal voltage may be supplied to banks selected by the bank PASR signal, thereby enabling refresh operations in the entire bank, or an internal voltage adequate to partially enable refresh operations in all the banks may be supplied. Thus, unnecessary power consumption may be effectively controlled.
摘要:
A memory core of a resistive type memory device includes at least a first resistive type memory cell coupled to a bit-line, a first resistance to voltage converter and a bit-line sense amplifier. The first resistance to voltage converter is coupled to the bit-line at a first node. The first resistance to voltage converter converts a resistance of the first resistive type memory cell to a corresponding voltage based on a read column selection signal. The bit-line sense amplifier is coupled to the bit-line at the first node and is coupled to a complementary bit-line at a second node. The bit-line sense amplifier senses and amplifies a voltage difference of the bit-line and the complementary bit-line in response to a sensing control signal.
摘要:
A semiconductor memory device and a self-refresh method of the semiconductor memory device. The semiconductor memory device includes: a memory cell array including one or more memory cells; a sense amplifier connected to a sensing line and a complementary sensing line and sensing/amplifying data stored in the one or more memory cells; and a sense amplifier control circuit sequentially supplying a first voltage and a second voltage having different levels to the sense amplifier through the sensing line during a refresh operation.
摘要:
Provided are a memory device and a memory module, which perform both an ECC operation and a redundancy repair operation. The memory device repairs a single-bit error due to a ‘fail’ cell by using an error correction code (ECC) operation, and also repairs the ‘fail’ cell by using a redundancy repair operation when the ‘fail’ cell is not repairable by the ECC operation. The redundancy repair operation includes a data line repair and a block repair. The ECC operation may change a codeword corresponding to data per one unit of memory cells including the ‘fail’ cell, and may also change the size of parity bits regarding the changed codeword.
摘要:
Semiconductor memory devices having hierarchical word line structures are provided. A block of sub-word line driver circuits (SWDB) are disposed between a first block of memory and a second block of memory. A SWDB includes a plurality of sub-wordline driver (SWD) circuits arranged in a plurality of SWD columns each having four SWD circuits extending in a first direction between the first and second blocks of memory. Two adjacent SWD columns include a SWD group for driving a plurality of sub-word lines extending from the SWD group along the first direction into the first and second blocks of memory.