Abstract:
A hydrodynamic retarder has a centrally disposed chamber which is filled with hydraulic fluid and subjected to centrifugal forces. A valve mechanism, responsive to the operator, is opened by a control valve system when vehicle retarding action is requested to permit rapid filling of the retarder vane space from the centrally disposed chamber. The valve mechanism is also closed by the control valve system after a predetermined time. This accommodates fast filling of the retarder but does not permit air ingestion by the retarder. A passage, in the stationary housing portion of the retarder, is opened to the transmission pump circuit during retarding action to maintain the retarder pressure and fluid circulation for cooling. The central chamber has an air control valve to admit air to the chamber as the chamber empties of hydraulic fluid and to permit air exhaust therefrom when the chamber is refilled.
Abstract:
A cross-drive transmission has a hydraulic brake apply system and a mechanical brake apply system actuated through the same rotary input shaft of the vehicle operator. Rotation of the input shaft rotates a cam which controls a brake control valve which causes a regulated brake apply pressure to be delivered to the hydraulic portion of the brake system for service brake actuation. The cam is moved angularly through a desired angular range which will normally deliver the maximum hydraulic pressure used to actuate the brakes. After the angle is achieved, further rotation of the input shaft causes the cam to enter a dwell phase which permits additional stroke of the mechanical brake apply system if required. This may be required at times because of inadequate hydraulic pressure available from a suitable hydraulic pressure source or the inability of the hydraulic brake apply system to achieve the required braking effort. The mechanical system is driven through a differential gear assembly with differential output members acting to drive the brake pack actuators. One-way clutch mechanisms allow the differential output members to move without limitation in the brake applying direction but limit the return stroke of them, and therefore the return stroke of the ball ramp cam apply rings and the brake torque arms actuating them so as to establish brake adjustment.
Abstract:
A power transmission having fluid actuated ratio establishing devices has a center support disposed in a cylindrical main bore of the transmission case and a plurality of elastomeric shims around the center support in an annular gap between the latter and the main bore. Each shim has a spacer portion in compression between the center support and the main bore which spacer portions exert balanced radially directed forces on the center support operative to centralize the latter in the main bore and the shims have coefficients of thermal expansion sufficiently exceeding the coefficients of thermal expansion of the case and/or the center support to maintain the spacer portions in compression throughout the operating temperature range of the transmission. In addition, one of the compressed spacer portions is interposed between a fluid supply passage in the case and a passage in the center support and has an aperture in register with the passages so that the spacer portion forms a gasket preventing fluid leakage into the gap.
Abstract:
A multispeed transmission having an automatic shift control system having an automatic shift valve which is biased for upshift by a force increasing with output speed of the transmission and is biased for downshift by a force increasing concurrently with torque demand, to provide upshifts at speeds increasing with torque demand and downshifts at lower speeds. The shift valve controls the supply of shift fluid pressure to the ratio-engaging devices to establish low and high ratio drives. A regulator valve increases the shift fluid pressure with an increasing lagging torque demand signal. A modulator valve is controlled by an engine fuel feed or throttle to provide a concurrent torque demand signal pressure concurrent with throttle movement for the shift valve. The lagging torque demand signal is more concurrent with engine torque and power, such as the gasifier pressure of a gas turbine engine, or the supercharger pressure of an internal combustion engine. The transmission is shifted immediately in response to torque demand, and the shift pressure is proportional to the engine torque and speed at the time of the shift.
Abstract:
A hybrid system includes a hybrid module that is located between an engine and a transmission. The hybrid system includes an energy storage system for storing energy from and supplying energy to the hybrid module. An inverter transfers power between the energy storage system and the hybrid module. The hybrid system also includes a cooling system, a DC-DC converter, and a high voltage tap. The hybrid module is designed to recover energy, such as during braking, as well as power the vehicle. The hybrid module includes an electrical machine (eMachine) along with electrical and mechanical pumps for circulating fluid. A clutch provides the sole operative connection between the engine and the eMachine. The hybrid system further incorporates a power take off (PTO) unit that is configured to be powered by the engine and/or the eMachine.
Abstract:
A mechanism for operatively connecting an engine and transmission within aehicle. The mechanism includes a rotary cylinder-like structure 33 having spline lock elements adapted to mesh with spline lock elements carried by an end wall of the engine. A worm-worm wheel assembly or its equivalent is used to effect rotation of the cylinder; self-locking characteristic of the worm-worm wheel unit resists load forces tending to disturb the lock action. An annular housing structure is provided to seal the lock mechanisms from mud, snow, etc. in the ambient atmosphere.
Abstract:
A mounting for the transmission of a track laying vehicle wherein the transmission is longitudinally installed and removed from a power-pack compartment in the hull of the vehicle. The mounting includes a pair of collars slidably disposed on bosses on opposite sides of the transmission case for movement between laterally inboard and outboard positions. As the transmission is pushed into the power-pack compartment, the collars are in the retracted positions. When the transmission achieves an installed position with the collars aligned on the sprocket axis of the hull, the collars are moved to the extended positions wherein an external bearing surface on each collar engages an internal cylindrical pilot surface on a web adapter rigidly attached to the adjacent hull wall. The transmission is supported at the sprocket axis through the collars.
Abstract:
A plate separator for a multiplate clutch includes a circular spine and integral bifurcations extending in opposite directions from the spine. The plate separator is disposed in an annulus defined by a pair of outer friction plates and an interposed inner friction plate. When the outer friction plates clamp the inner friction plate, the bifurcations flex at their junctures with the spine. When the inner friction plate is released, the bifurcations unflex to separate the outer plates from the inner plate.
Abstract:
A hybrid system includes a hybrid module that is located between an engine and a transmission. The hybrid system includes an energy storage system for storing energy from and supplying energy to the hybrid module. An inverter transfers power between the energy storage system and the hybrid module. The hybrid system also includes a cooling system, a DC-DC converter, and a high voltage tap. The hybrid module is designed to recover energy, such as during braking, as well as power the vehicle. The hybrid module includes an electrical machine (eMachine) along with electrical and mechanical pumps for circulating fluid. A clutch provides the sole operative connection between the engine and the eMachine. The hybrid system further incorporates a power take off (PTO) unit that is configured to be powered by the engine and/or the eMachine.
Abstract:
In a side-by-side engine and transmission assembly wherein the engine has a block defining a primary rotating group axis and the transmission has a drive output axis and a power input axis parallel thereto and laterally spaced therefrom, a connection between the engine and transmission includes a transfer case attached to the engine generally amidships thereof defining an engine power output axis parallel to and spaced from the primary rotating group axis, a pair of trunnions on the transfer case aligned on the engine power output axis, a pair of saddles on the transmission aligned on the transmission input axis, the trunnions being received in the saddles to connect the engine to the transmission with the engine power output and transmission power input axes coinciding, drive shaft means aligned on the coincident axes to conduct engine power from the transfer case to the transmission, and a torque reaction control connection between the engine and transmission remote from the coincident axes.