Abstract:
A silicon-on-insulator (SOI) device and structure having locally strained regions in the silicon active layer formed by increasing the thickness of underlying regions of a buried insulating layer separating the silicon active layer from the substrate. The stress transferred from the underlying thickened regions of the insulating layer to the overlying strained regions increases carrier mobility in these confined regions of the active layer. Devices formed in and on the silicon active layer may benefit from the increased carrier mobility in the spaced-apart strained regions.
Abstract:
Disclosed is a triple well CMOS device structure that addresses the issue of latchup by adding an n+ buried layer not only beneath the p-well to isolate the p-well from the p− substrate but also beneath the n-well. The structure eliminates the spacing issues between the n-well and n+ buried layer by extending the n+ buried layer below the entire device. The structure also addresses the issue of threshold voltage scattering by providing a p+ buried layer below the entire device under the n+ buried layer or below the p-well side of the device only either under or above the n+ buried layer) Latchup robustness can further be improved by incorporating into the device an isolation structure that eliminates lateral pnp, npn, or pnpn devices and/or a sub-collector region between the n+ buried layer and the n-well.
Abstract:
A silicon-on-insulator (SOI) device and structure having locally strained regions in the silicon active layer formed by increasing the thickness of underlying regions of a buried insulating layer separating the silicon active layer from the substrate. The stress transferred from the underlying thickened regions of the insulating layer to the overlying strained regions increases carrier mobility in these confined regions of the active layer. Devices formed in and on the silicon active layer may benefit from the increased carrier mobility in the spaced-apart strained regions.
Abstract:
A method for forming a gas dielectric with support structure on a semiconductor device structure provides low capacitance and adequate support for a conductor of the semiconductor device structure. A conductive structure, such as via or interconnect, is formed in a wiring-layer dielectric. A support is then formed that connects to the conductive structure, the support including an area thereunder. The wiring-layer dielectric is then removed from the area to form a gas dielectric.
Abstract:
A method of forming an isolation region is provided that in one embodiment substantially reduces divot formation. In one embodiment, the method includes providing a semiconductor substrate, forming a first pad dielectric layer on an upper surface of the semiconductor substrate and forming a trench through the first pad dielectric layer into the semiconductor substrate. In a following process sequence, the first pad dielectric layer is laterally etched to expose an upper surface of the semiconductor substrate that is adjacent the trench, and the trench is filled with a trench dielectric material, wherein the trench dielectric material extends atop the upper surface of the semiconductor substrate adjacent the trench and abuts the pad dielectric layer.
Abstract:
A method of forming an isolation region is provided that in one embodiment substantially reduces divot formation. In one embodiment, the method includes providing a semiconductor substrate, forming a first pad dielectric layer on an upper surface of the semiconductor substrate and forming a trench through the first pad dielectric layer into the semiconductor substrate. In a following process sequence, the first pad dielectric layer is laterally etched to expose an upper surface of the semiconductor substrate that is adjacent the trench, and the trench is filled with a trench dielectric material, wherein the trench dielectric material extends atop the upper surface of the semiconductor substrate adjacent the trench and abuts the pad dielectric layer.
Abstract:
A method for calibrating a software model for a given structure of interest for a variable imposed by an adjacent structure. First determine the spatial extent of the variable imposed by the adjacent structure. Then assign a value to the spatial extent, which varies as a function of distance from the adjacent structure to the given structure. Finally, attach that value to the model of the given structure.
Abstract:
A method for fabricating high gain FETs that substantially reduces or eliminates unwanted variation in device characteristics caused by using a prior art shadow masking process is provided. The inventive method employs a blocking mask that at least partially extends over the gate region wherein after extension and halo implants an FET having an asymmetric halo region asymmetric extension regions or a combination thereof is fabricated. The inventive method thus provides high gain FETs in which the variation of device characteristics is substantially reduced. The present invention also relates to the resulting asymmetric high gain FET device that is fabricated utilizing the method of the present invention.
Abstract:
A diagnostic system and method for testing an integrated circuit (IC) during fabrication thereof, wherein the diagnostic system comprises at least one IC chip comprising an electrical signature; a sacrificial circuit adjacent to the IC chip and comprising a known electrical signature and intentionally mis-designed circuitry; and a comparator adapted to compare the electrical signature of the IC chip with the known electrical signature of the sacrificial circuit, wherein a match in the electrical signature of the IC chip with the known electrical signature of the sacrificial circuit indicates that the IC chip is mis-designed. The diagnostic system further comprises a semiconductor wafer comprising a plurality of IC chips and a kerf area separating one IC chip from another IC chip. The sacrificial circuit is located in the kerf area or alternatively on each of the plurality of IC chips. A mis-designed IC chip comprises abnormally functioning circuitry.
Abstract:
A method for adjusting the flatness of a lithographic mask includes determining an initial mask flatness of the mask, determining an applied stress for bringing the mask to a desired mask flatness, and determining a mounting temperature of a pellicle frame to be mounted to the mask, the mounting temperature corresponding to the applied stress. The actual temperature of the pellicle frame is adjusted to the determined mounting temperature.