摘要:
A method for calibrating a software model for a given structure of interest for a variable imposed by an adjacent structure. First determine the spatial extent of the variable imposed by the adjacent structure. Then assign a value to the spatial extent, which varies as a function of distance from the adjacent structure to the given structure. Finally, attach that value to the model of the given structure.
摘要:
A method for calibrating a software model for a given structure of interest for a variable imposed by an adjacent structure. First determine the spatial extent of the variable imposed by the adjacent structure. Then assign a value to the spatial extent, which varies as a function of distance from the adjacent structure to the given structure. Finally, attach that value to the model of the given structure.
摘要:
The present invention relates to metal-insulator-metal (MIM) capacitors and field effect transistors (FETs) formed on a semiconductor substrate. The FETs are formed in Front End of Line (FEOL) levels below the MIM capacitors which are formed in upper Back End of Line (BEOL) levels. An insulator layer is selectively formed to encapsulate at least a top plate of the MIM capacitor to protect the MIM capacitor from damage due to process steps such as, for example, reactive ion etching. By selective formation of the insulator layer on the MIM capacitor, openings in the inter-level dielectric layers are provided so that hydrogen and/or deuterium diffusion to the FETs can occur.
摘要:
A method for detecting semiconductor process stress-induced defects. The method comprising: providing a polysilicon-bounded test diode, the diode comprising a diffused first region within an upper portion of a second region of a silicon substrate, the second region of an opposite dopant type from the first region, the first region surrounded by a peripheral dielectric isolation, a peripheral polysilicon gate comprising a polysilicon layer over a dielectric layer and the gate overlapping a peripheral portion of the first region; stressing the diode; and monitoring the stressed diode for spikes in gate current during the stress, determining the frequency distribution of the slope of the forward bias voltage versus the first region current at the pre-selected forward bias voltage and monitoring, after stress, the diode for soft breakdown. A DRAM cell may be substituted for the diode. The use of the diode as an antifuse is also disclosed.
摘要:
A semiconductor device having a conduction channel which is electrically modulated. A trench structure is formed within a substrate enclosing a diffusion region. The trench structure isolates the devices formed within the diffusion region from the remaining portion of the substrate. The trench walls are made thin enough so that the width of the channel within a diffusion region may be controlled by applying an electrical potential between a trench wall and the substrate. Transistors formed within the trench structure have a conduction channel width controlled by the applied voltage permitting the gain of the transistor to be matched with the gain of other transistors on the substrate.
摘要:
A novel method for forming substrate contact regions on a SOI substrate without requiring additional space, and in order to provide lower diffusion capacitance. The method utilizes known semiconductor processing techniques. This method for selectively modifying the BOX region of a SOI substrate involves first providing a silicon substrate. Then, ion implanting the base using SIMOX techniques (e.g. O2 implant) is accomplished. Next, the substrate is photopatterned to protect the modified BOX region. Then, further ion implanting using a “touch-up” O2 implant is accomplished, thereby resulting in a good quality BOX as typically practiced. The final step is annealing the substrate. The area of the substrate, which had a mask present, would not receive the “touch-up” O2 implant (second ion implant), which in turn would result in a leaky BOX.
摘要:
Improved field effect transistor (FET) structures are described. They include a thin film transistor (TFT), wherein a contact layer directly connects a diffusion region of the TFT to an active site of another device, e.g., another transistor. This invention is especially suitable for TFT's which are built on one or more conductive studs. Static random access memory (SRAM) cells incorporating one or more of the TFT's are also described. Moreover, this invention is directed to methods for preventing or alleviating the problems associated with gouging during formation of contact layers.
摘要:
Improved field effect transistor (FET) structures are described. They include a thin film transistor (TFT), wherein a contact layer directly connects a diffusion region of the TFT to an active site of another device, e.g., another transistor. This invention is especially suitable for TFT's which are built on one or more conductive studs. Static random access memory (SRAM) cells incorporating one or more of the TFT's are also described. Moreover, this invention is directed to methods for preventing or alleviating the problems associated with gouging during formation of contact layers.
摘要:
Improved field effect transistor (FET) structures are described. They include a thin film transistor (TFT), wherein a contact layer directly connects a diffusion region of the TFT to an active site of another device, e.g., another transistor. This invention is especially suitable for TFT's which are built on one or more conductive studs. Static random access memory (SRAM) cells incorporating one or more of the TFT's are also described. Moreover, this invention is directed to methods for preventing or alleviating the problems associated with gouging during formation of contact layers.
摘要:
The present invention is a sidewall connector providing a conductive path linking at least two conductive regions. The sidewall connector has a top portion comprising an outer surface. A conductive member contacts the top portion, connecting the rail to a conductive region or to an external conductor. An etch stop layer located on a conductive region can be used to protect the conductive region during the directional etch to form the sidewall connector. A conductive bridge is then used to link exposed portions of the conductive region and the conductive sidewall rail, the conductive bridge extending across the thickness of the etch stop layer. A "T" connector is formed by the process, starting with a pair of intersecting sidewalls wherein the two sidewalls have top edges at different heights where they intersect. The connector is used to form a strap for a DRAM cell.