摘要:
The present invention relates to a method of preparing a porous silicon nanorod structure composed of columnar bundles having a diameter of 50-100 nm and a length of 2-5 μm, and a lithium secondary cell using the porous silicon nanorod structure as an anode active material. The present invention provides a high-capacity and high-efficiency anode active material for lithium secondary cells, which can overcome the low conductivity of silicon and improve the electrode deterioration attributable to volume expansion because it is prepared by electrodepositing the surface of silicon powder with metal and simultaneously etching the silicon powder partially using hydrofluoric acid.
摘要:
A carbon anode active material for lithium secondary battery comprising a cluster or thin film layer of a metal or metal oxide coated onto the surface of the carbon active material, a preparation method thereof, and a metal-carbon hybrid electrode and a lithium secondary battery comprising the same. The carbon active material is prepared through a gas suspension spray coating method. An electrode comprising the carbon active material according to the present invention shows excellent conductivity, high rate charge/discharge characteristics, cycle life characteristics and electrode capacity close to theoretical value.
摘要:
The present invention relates to a method of preparing a porous silicon nanorod structure composed of columnar bundles having a diameter of 50-100 nm and a length of 2-5 μm, and a lithium secondary cell using the porous silicon nanorod structure as an anode active material. The present invention provides a high-capacity and high-efficiency anode active material for lithium secondary cells, which can overcome the low conductivity of silicon and improve the electrode deterioration attributable to volume expansion because it is prepared by electrodepositing the surface of silicon powder with metal and simultaneously etching the silicon powder partially using hydrofluoric acid.
摘要:
Disclosed is an electrode coated with a metal-doped carbon film.A metal-doped carbon film covers the interface of an electrode active material where it contacts an electrolyte. Such an artificial interface improves ion and electrical conductivity of the electrode interface and prevents pass of water or electrolyte during electrochemical reactions, thereby preventing undesired reactions.
摘要:
The present invention relates to a process of preparing zinc-tin composite transparent conductive oxide films ZnxSnyOz superior in light transmission, interfacial adhesion strength and electric conductivity by an organic chemical deposition method by using an electron cyclotron resonance (ECR).Zinc-tin oxide film composite ZnxSnyOz (x=1, y=8.7, Z=12) stably prepared by an electron-cyclotron chemical vapor deposition according to the present invention is superior to ZnSnO3 and Zn2SnO4 prepared by a physical deposition method in electric conductivity, thereby being applicable in a wide range of electric appliances including a heating element.
摘要:
A system for chemical vapor deposition at ambient temperature using electron cyclotron resonance (ECR) comprising: an ECR system; a sputtering system for providing the ECR system with metal ion; an organic material supply system for providing organic material of gas or liquid phase; and a DC bias system for inducing the metal ion and the radical ion on a substrate is provided, and a method for fabricating metal composite film comprising: a step of providing a process chamber with the gas as plasma form using the ECR; a step of providing the chamber with the metal ion and the organic material; a step of generating organic material ion and radical ion by reacting the metal ion and the organic material with the plasma; and a step of chemically compounding the organic material ion and the radical ion after inducing them on a surface of a specimen is also provided.
摘要:
An apparatus and a method for recovery of sulfur hexafluoride is provided. Sulfur hexafluoride (SF6) may be separated with high-concentration and improved recovery ratio through a multi-stage separation and recovery processes using a plurality of separation membrane modules, and as well, SF6 gas may be concentrated to maximize the SF6 recovery ratio before the separation and recovery processes through the separation membrane modules. Furthermore, sulfur dioxide (SO2) and moisture included in the SF6 waste gas may be removed effectively so as to extend the service life of the separation membrane modules.
摘要:
Disclosed are a silicon nanostructured material with theoretical storage capacity of energy resulting from electrochemical reaction with lithium improved more than 10 times as compared to the existing graphite material and having superior output characteristics, an electrode including the same, and a secondary battery and an electrochemical capacitor including the electrode as a negative electrode. The physical stability of the electrode active material is improved and an electrode with high performance can be obtained. Since more energy can be stored as compared to the graphite material of the same thickness and high-output performance can be achieved through the nanostructure, energy density can be remarkably improved as compared to the existing lithium-ion battery by about 2 times. An asymmetric lithium-ion secondary battery including the electrode active material is applicable to storage of renewable energy, ubiquitous power source, power supply for machinery and vehicles, or the like.
摘要:
An apparatus and a method for recovery of sulfur hexafluoride is provided. Sulfur hexafluoride (SF6) may be separated with high-concentration and improved recovery ratio through a multi-stage separation and recovery processes using a plurality of separation membrane modules, and as well, SF6 gas may be concentrated to maximize the SF6 recovery ratio before the separation and recovery processes through the separation membrane modules. Furthermore, sulfur dioxide (SO2) and moisture included in the SF6 waste gas may be removed effectively so as to extend the service life of the separation membrane modules.