摘要:
A lighting apparatus includes a substrate, a plurality of light-emitting dies, a continuous encapsulation structure, and a gel. The plurality of light-emitting dies are disposed on the substrate and spaced apart from one another. The light-emitting dies each are covered with a respective individual phosphor coating conformally. The continuous encapsulation structure has a curved surface disposed over the substrate and encapsulates the light-emitting dies within. The gel is disposed between the encapsulation structure and the phosphor coating for each of the light-emitting dies. The gel contains diffuser particles. The lighting apparatus has a substantially white appearance in an off state when the plurality of light-emitting dies is turned off.
摘要:
A seed layer for growing a group III-V semiconductor structure is embedded in a dielectric material on a carrier substrate. After the group III-V semiconductor structure is grown, the dielectric material is removed by wet etch to detach the carrier substrate. The group III-V semiconductor structure includes a thick gallium nitride layer of at least 100 microns or a light-emitting structure.
摘要:
A light emitting diode structure and methods of manufacturing the same are disclosed. In an example, a light emitting diode structure includes a crystalline substrate having a thickness that is greater than or equal to about 250 μm, wherein the crystalline substrate has a first roughened surface and a second roughened surface, the second roughened surface being opposite the first roughened surface; a plurality of epitaxy layers disposed over the first roughened surface, the plurality of epitaxy layers being configured as a light emitting diode; and another substrate bonded to the crystalline substrate such that the plurality of epitaxy layers are disposed between the another substrate and the first roughened surface of the crystalline substrate.
摘要:
A LED die and method for bonding, dicing, and forming the LED die are disclosed. In an example, the method includes forming a LED wafer, wherein the LED wafer includes a substrate and a plurality of epitaxial layers disposed over the substrate, wherein the plurality of epitaxial layers are configured to form a LED; bonding the LED wafer to a base-board to form a LED pair; and after bonding, dicing the LED pair, wherein the dicing includes simultaneously dicing the LED wafer and the base-board, thereby forming LED dies.
摘要:
The present disclosure relates to high efficiency light emitting diode devices and methods for fabricating the same. In accordance with one or more embodiments, a light emitting diode device includes a substrate having one or more recessed features formed on a surface thereof and one or more omni-directional reflectors formed to overlie the one or more recessed features. A light emitting diode layer is formed on the surface of the substrate to overlie the omni-directional reflector. The one or more omni-directional reflectors are adapted to efficiently reflect light.
摘要:
The present disclosure involves a lighting instrument. The lighting instrument includes a board or substrate, for example, a printed circuit board substrate. The lighting instrument includes a plurality of light-emitting diode (LED) dies disposed on the substrate. The LED dies are spaced apart from one another. Each LED die is covered with a respective individual phosphor coating that is coated around the LED die conformally. Due at least in part to the individual phosphor coatings, the LED dies and the lighting instrument may assume a substantially white appearance in an off state. The lighting instrument also includes an encapsulation structure disposed over the substrate. The encapsulation structure may be a diffuser cap that encapsulates the light-emitting dies within. A diffuser gel fills the space between the encapsulation structure and the LED dies.
摘要:
The present disclosure relates to high efficiency light emitting diode devices and methods for fabricating the same. In accordance with one or more embodiments, a light emitting diode device includes a substrate having one or more recessed features formed on a surface thereof and one or more omni-directional reflectors formed to overlie the one or more recessed features. A light emitting diode layer is formed on the surface of the substrate to overlie the omni-directional reflector. The one or more omni-directional reflectors are adapted to efficiently reflect light.
摘要:
A seed layer for growing a group III-V semiconductor structure is embedded in a dielectric material on a carrier substrate. After the group III-V semiconductor structure is grown, the dielectric material is removed by wet etch to detach the carrier substrate. The group III-V semiconductor structure includes a thick gallium nitride layer of at least 100 microns or a light-emitting structure.