Abstract:
A semiconductor optical amplifier, an acousto-optic tunable filter, a phase shifter, a lens, and an internal etalon are arranged in a resonator. Outside the resonator, two lenses, two beam splitters, two photo-detectors, and an external etalon are arranged. The internal etalon is a quartz etalon and the external etalon is a crystal etalon. Therefore, the rate of change in transmission peak wavelength of the internal etalon to a temperature change is greater than that of the external etalon.
Abstract:
A quantum dot semiconductor device includes an active layer having a plurality of quantum dot layers each including a composite quantum dot formed by stacking a plurality of quantum dots and a side barrier layer formed in contact with a side face of the composite quantum dot. The stack number of the quantum dots and the magnitude of strain of the side barrier layer from which each of the quantum dot layers is formed are set so that a gain spectrum of the active layer has a flat gain bandwidth corresponding to a shift amount of the gain spectrum within a desired operation temperature range.
Abstract:
Aiming at realizing a semiconductor integrated optical element comprising a single semiconductor substrate, and first and second optical waveguides differed in the equivalent refractive index from each other on the semiconductor substrate, allowing light signal to propagate from the first optical waveguide to the second optical waveguide, in which the first and second optical waveguides are provided side-by-side on the semiconductor substrate to form a directional coupler allowing optical coupling between the first and second optical waveguides, and a first-guiding-mode optical signal in the first optical waveguide is output after being converted into a second-guiding-mode optical signal in second optical waveguide, which makes possible to suppress generation of reflection loss and emission loss in optical coupling, and obtain extremely desirable optical coupling characteristics, without causing reflection of optical signal, between different types of optical waveguides differed from each other in the equivalent refractive index.
Abstract:
A light oscillation part including an active layer for generating light by current injection, a tuning layer with an intermediate layer formed between the active layer and the tuning layer, for varying an oscillation wavelength by current injection and a diffraction grating formed near the active layer and the tuning layer, and a light amplification part including an active layer for amplifying light by current injection are formed on a semiconductor substrate. Light oscillation elements having wide wavelength variation ranges and the light amplification are integrated on a semiconductor substrate, whereby wide wavelength variation ranges can be obtained and the output light can be much increased.
Abstract:
A polarization independent-type semiconductor optical amplifier comprises: a strained bulk active layer having a 20 nm to 90 nm-thick and having a tensile strain of a −0.10% to −0.60% strain amount; clad layers provided, sandwiching the strained bulk active layer; and a resonance suppressing means for suppressing resonance of light due to reflection on a light incident end face and a light exit end face of the strained bulk active layer, incident signal light entering at the light incident end face being amplified and exiting at the light exit end face, and an individual transmission gain of the exit signal light being substantially constant independent of a polarization state of the incident signal light. Whereby drastically increased fiber out saturation powers can be obtained with polarization independence retained.
Abstract:
Objects are achieved by an optical semiconductor device comprising: a structure 61 including a substrate 50, a diffraction grating 52a, an active layer 54 and a refractive index control layer 60; and an laser element 100 including an electrode 92a for the active layer, an electrode 92b for the refractive index control layer and an electrode 92c for switching, wherein a pre-bias current is previously supplied from the electrode 92a for the active layer to the active layer 54 in a state where a switching current is not supplied from the electrode 92c for switching to the active layer 54, and then while a current Idrive for activation is supplied from the electrode 92a for the active layer to the active layer 54, the laser element 100 is turned on by supplying the switching current Isw from the electrode 92c for switching to a part of the active layer 54, as well as turning off the laser element 100 by halting the supply of the switching current Isw.
Abstract:
An optical amplification control apparatus is formed from a semiconductor optical amplifier, a temperature adjustment unit adjusting the temperature of the semiconductor optical amplifier, and an optical gain control unit adjusting the temperature of the semiconductor optical amplifier by controlling the temperature adjustment unit, and varying an optical gain of the semiconductor optical amplifier. Thus, a pattern effect is suppressed even if the output light intensity (the intensity of amplified light) is increased.
Abstract:
A polarization-independent SOA is provided which uses an InP substrate (11) as a semiconductor substrate and uses GaInNAs having introduced tensile strain as an active layer (14). With this configuration, the polarization independence is achieved by introducing the tensile strain, and high saturation optical output power is realized by reducing the film thickness of the active layer (14) as well as the gain peak wavelength is increased by reducing the band gap of the active layer (14) through use of GaInNAs made by adding nitrogen (N) to GaInAs as a material of the active layer (14) so as to achieve high gain especially in C-band and L-band even when band filling exits at the time of injecting a high current into the active layer (14).
Abstract:
A polarization-independent SOA is provided which uses an InP substrate (11) as a semiconductor substrate and uses GaInNAs having introduced tensile strain as an active layer (14). With this configuration, the polarization independence is achieved by introducing the tensile strain, and high saturation optical output power is realized by reducing the film thickness of the active layer (14) as well as the gain peak wavelength is increased by reducing the band gap of the active layer (14) through use of GaInNAs made by adding nitrogen (N) to GaInAs as a material of the active layer (14) so as to achieve high gain especially in C-band and L-band even when band filling exits at the time of injecting a high current into the active layer (14).
Abstract:
The optical amplifying device comprises a DFB laser 22 formed on an n type InP substrate 10, for outputting control light; a symmetrical Mach-Zehnder interferometer 12 formed on the n type InP substrate 10 and including 3 dB optical couplers 14, 16 having 2 input ports and 2 output ports, and optical waveguides 24a, 24b which optically interconnect the output port of the 3 dB optical coupler 14 and the input port of the 3 dB optical coupler 16; and SOAs 24a, 24b respectively formed in the optical waveguides 24a, 24b.