摘要:
The present invention relates to complementary metal-oxide-semiconductor (CMOS) circuits that each contains at least a first and a second gate stacks. The first gate stack is located over a first device region (e.g., an n-FET device region) in a semiconductor substrate and comprises at least, from bottom to top, a gate dielectric layer, a metallic gate conductor, and a silicon-containing gate conductor. The second gate stack is located over a second device region (e.g., a p-FET device region) in the semiconductor substrate and comprises at least, from bottom to top, a gate dielectric layer and a silicon-containing gate conductor. The first and second gate stacks can be formed over the semiconductor substrate in an integrated manner by various methods of the present invention.
摘要:
A semiconductor structure including at least one n-type field effect transistor (nFET) and at least one p-type field effect transistor (pFET) that both include a metal gate having nFET behavior and pFET behavior, respectively, without including an upper polysilicon gate electrode is provided. The present invention also provides a method of fabricating such a semiconductor structure.
摘要:
An NFET containing a first high-k dielectric portion and a PFET containing a second high-k gate dielectric portion are formed on a semiconductor substrate. A gate sidewall nitride is formed on the gate of the NFET, while the sidewalls of the PFET remain free of the gate sidewall nitride. An oxide spacer is formed directly on the sidewalls of a PFET gate stack and on the gate sidewall nitride on the NFET. After high temperature processing, the first and second dielectric portions contain a non-stoichiometric oxygen deficient high-k dielectric material. The semiconductor structure is subjected to an anneal in an oxygen environment, during which oxygen diffuses through the oxide spacer into the second high-k dielectric portion. The PFET comprises a more stoichiometric high-k dielectric material and the NFET comprises a less stoichiometric high-k dielectric material. Threshold voltages of the PFET and the NFET are optimized by the present invention.
摘要:
An NFET containing a first high-k dielectric portion and a PFET containing a second high-k gate dielectric portion are formed on a semiconductor substrate. A gate sidewall nitride is formed on the gate of the NFET, while the sidewalls of the PFET remain free of the gate sidewall nitride. An oxide spacer is formed directly on the sidewalls of a PFET gate stack and on the gate sidewall nitride on the NFET. After high temperature processing, the first and second dielectric portions contain a non-stoichiometric oxygen deficient high-k dielectric material. The semiconductor structure is subjected to an anneal in an oxygen environment, during which oxygen diffuses through the oxide spacer into the second high-k dielectric portion. The PFET comprises a more stoichiometric high-k dielectric material and the NFET comprises a less stoichiometric high-k dielectric material. Threshold voltages of the PFET and the NFET are optimized by the present invention.
摘要:
NFET and PFET devices with separately stressed channel regions, and methods of their fabrication is disclosed. A FET is disclosed which includes a gate, which gate includes a metal in a first state of stress. The FET also includes a channel region hosted in a single crystal Si based material, which channel region is overlaid by the gate and is in a second state of stress. The second state of stress of the channel region is of an opposite sign than the first state of stress of the metal included in the gate. The NFET channel is usually in a tensile state of stress, while the PFET channel is usually in a compressive state of stress. The methods of fabrication include the deposition of metal layers by physical vapor deposition (PVD), in such manner that the layers are in stressed states.
摘要:
A method for forming a semiconductor device structure, comprising the steps of independently forming source/drain surface metal silicide layers and a fully silicided metal gate in a polysilicon gate stack. Specifically, one or more sets of spacer structures are provided along sidewalls of the polysilicon gate stack after formation of the source/drain surface metal silicide layers and before formation of the silicided metal gate, in order to prevent formation of additional metal silicide structures in the source/drain regions during the gate salicidation process. The resulting semiconductor device structure includes a fully silicide metal gate that either comprises a different metal silicide material from that in the source/drain surface metal silicide layers, or has a thickness that is larger than that of the source/drain surface metal silicide layers. The source/drain regions of the semiconductor device structure are devoid of other metal silicide structures besides the surface metal silicide layers.
摘要:
A system and method are provided for thermal dissipation from a heat producing electronic device. The system includes a substrate for fabricating integrated circuits, the substrate having a first face and a second face. The second face is disposed substantially parallel to the first face having an electronic device disposed therein. A metallized crack stop is disposed in the first face surrounding the electronic device. A plurality of first metal conduits extend through the substrate from the second face thereof to the crack stop, wherein each first metal conduit is in thermal contact with the crack stop to provide a thermal drain from the electronic device to the second face.
摘要:
A process and structure for enabling the creation of reliable electrical through-via connections in a semiconductor substrate and a process for filling vias. Problems associated with under etch, over etch and flaring of deep Si RIE etched through-vias are mitigated, thereby vastly improving the integrity of the insulation and metallization layers used to convert the through-vias into highly conductive pathways across the Si wafer thickness. By using an insulating collar structure in the substrate in one case and by filling the via in accordance with the invention in another case, whole wafer yield of electrically conductive through vias is greatly enhanced.
摘要:
A semiconductor structure including at least one n-type field effect transistor (nFET) and at least one p-type field effect transistor (pFET) that both include a metal gate having nFET behavior and pFET behavior, respectively, without including an upper polysilicon gate electrode is provided. The present invention also provides a method of fabricating such a semiconductor structure.
摘要:
An advanced gate structure that includes a fully silicided metal gate and silicided source and drain regions in which the fully silicided metal gate has a thickness that is greater than the thickness of the silicided source/drain regions is provided. A method of forming the advanced gate structure is also provided in which the silicided source and drain regions are formed prior to formation of the silicided metal gate region.