Abstract:
The optical module comprises a device mounted with a photoelectric element and a receptacle to optically connect this device and an optical fiber is provided. The receptacle comprises a device holder at its one end, allows the device holder to be fitted to the top end side of the device, and fixed and held through the interposition of the ultraviolet curing resin. The device holder comprises a window area relatively large in an amount of ultraviolet transmission dispersedly arranged on the entire periphery of the fitted portion with the device.
Abstract:
A metal pattern for a high frequency signal is patterned on a flexile substrate, and the flexile substrate is bent in such a way as to form a substantially right angle at a spot corresponding to an end of the metal pattern for the signal. And an end of the metal pattern is fixedly attached to a lead pin for signaling, attached to a stem, for electrical continuity, so as to be in a posture horizontal with each other. Meanwhile, a part of the lead pins attached to the stem, being in such a state as penetrated through respective holes provided in the flexible substrate, is fixedly attached to a part of metal patterns provided on the flexible substrate so as to ensure electrical continuity therebetween.
Abstract:
Provided are an optical receptacle capable of manufacturing an optical module thereby, while suppressing a manufacturing cost, preventing a quality degradation, and suppressing a quantity of returning light by reflection. In the optical receptacle, a recess for receiving a lens and a lens support and a through-hole penetrating from a bottom of the recess toward an exterior are formed, and the recess is formed so that an inner peripheral surface of the recess is fixed to a desired position with respect to an outer peripheral surface of the lens support, in a case where the lens and the lens support are received in the recess such that an optical axis of the lens and an optical axis of the optical fiber to be inserted into the through hole are deviated from each other.
Abstract:
The optical module comprises a device mounted with a photoelectric element and a receptacle to optically connect this device and an optical fiber is provided. The receptacle comprises a device holder at its one end, allows the device holder to be fitted to the top end side of the device, and fixed and held through the interposition of the ultraviolet curing resin. The device holder comprises a window area relatively large in an amount of ultraviolet transmission dispersedly arranged on the entire periphery of the fitted portion with the device.
Abstract:
A semiconductor chip on which a light receiving element is mounted, a preamplifier for amplifying an output signal from the light receiving element, and an insulating carrier substrate on which the light receiving element is mounted are connected such that the output signal from the light receiving element is input to the preamplifier through electrodes on the carrier substrate, and there are provided two electrodes, on the carrier substrate, having a capacitance value of 40 fF or more therebetween in a state where no light receiving element is mounted.
Abstract:
A semiconductor chip on which a light receiving element is mounted, a preamplifier for amplifying an output signal from the light receiving element, and an insulating carrier substrate on which the light receiving element is mounted are connected such that the output signal from the light receiving element is input to the preamplifier through electrodes on the carrier substrate, and there are provided two electrodes, on the carrier substrate, having a capacitance value of 40 fF or more therebetween in a state where no light receiving element is mounted.
Abstract:
There is provided an optical receiver in which, between an optical receiver sub-assembly and a pre-amplifier on a main printed circuit board, two transmission lines on a flexible printed circuit board for connecting an optical receiver module with the main printed circuit board, a balanced-type attenuator circuit composed of four resistor elements, and two capacitor elements connected in parallel with the balanced-type attenuator circuit are provided.
Abstract:
A photodetector module that can achieve impedance matching and power saving. A photodetector (11) and an amplifier (12) for amplifying an electric signal from the photodetector (11) are mounted on a stem (14). A dielectric plate (18) is arranged between the stem (14) and a flexible substrate (20). To transfer an electric signal from the amplifier (12) to the substrate (20), a lead pin (15d) is provided to pass through the stem (14) and the dielectric plate (18). The output of the amplifier (12) includes a capacitance component, and the output impedance of the amplifier (12) is higher than the impedance that matches with the substrate (20). Further, the thickness d of the dielectric plate (18) is such that the inductance component of the lead pin (15d) includes an inductance component that is inductive, which cancels the capacitance component of the amplifier, and impedance matching with the substrate (20) can be achieved.
Abstract:
There is provided an optical receiver in which, between an optical receiver sub-assembly and a pre-amplifier on a main printed circuit board, two transmission lines on a flexible printed circuit board for connecting an optical receiver module with the main printed circuit board, a balanced-type attenuator circuit composed of four resistor elements, and two capacitor elements connected in parallel with the balanced-type attenuator circuit are provided.
Abstract:
The present invention provides an optical modulator module comprising: a chip carrier; a semiconductor optical modulator for modulating light based on an electronic signal; a strip conductor electrically connected to the semiconductor optical modulator; a first resistor electrically connected to the semiconductor optical modulator; and a second resistor electrically connected in series to the first resistor; wherein the semiconductor optical modulator, the strip conductor, and the first and second resistors are disposed on the chip carrier; and wherein the frequency characteristics of the optical modulator module is adjusted by selecting to short or not to short both ends of the first resistor by use of a wire as necessary.