摘要:
A damaged region is formed by generation of plasma by excitation of a source gas, and by addition of ion species contained in the plasma from one of surfaces of a single crystal semiconductor substrate; an insulating layer is formed over the other surface of the single crystal semiconductor substrate; a supporting substrate is firmly attached to the single crystal semiconductor substrate so as to face the single crystal semiconductor substrate with the insulating layer interposed therebetween; separation is performed at the damaged region into the supporting substrate to which a single crystal semiconductor layer is attached and part of the single crystal semiconductor substrate by heating of the single crystal semiconductor substrate; dry etching is performed on a surface of the single crystal semiconductor layer attached to the supporting substrate; the single crystal semiconductor layer is recrystallized by irradiation of the single crystal semiconductor layer with a laser beam to melt at least part of the single crystal semiconductor layer.
摘要:
The semiconductor element includes an oxide semiconductor layer on an insulating surface; a source electrode layer and a drain electrode layer over the oxide semiconductor layer; a gate insulating layer over the oxide semiconductor layer, the source electrode layer, and the drain electrode layer; and a gate electrode layer over the gate insulating layer. The source electrode layer and the drain electrode layer have sidewalls which are in contact with a top surface of the oxide semiconductor layer.
摘要:
Forming an insulating film on a surface of the single crystal semiconductor substrate, forming a fragile region in the single crystal semiconductor substrate by irradiating the single crystal semiconductor substrate with an ion beam through the insulating film, forming a bonding layer over the insulating film, bonding a supporting substrate to the single crystal semiconductor substrate by interposing the bonding layer between the supporting substrate and the single crystal semiconductor substrate, dividing the single crystal semiconductor substrate at the fragile region to separate the single crystal semiconductor substrate into a single crystal semiconductor layer attached to the supporting substrate, performing first dry etching treatment on a part of the fragile region remaining on the single crystal semiconductor layer, performing second dry etching treatment on a surface of the single crystal semiconductor layer subjected to the first etching treatment, and irradiating the single crystal semiconductor layer with laser light.
摘要:
The present invention provides a method for manufacturing a highly reliable display device at a low cost with high yield. According to the present invention, a step due to an opening in a contact is covered with an insulating layer to reduce the step, and is processed into a gentle shape. A wiring or the like is formed to be in contact with the insulating layer and thus the coverage of the wiring or the like is enhanced. In addition, deterioration of a light-emitting element due to contaminants such as water can be prevented by sealing a layer including an organic material that has water permeability in a display device with a sealing material. Since the sealing material is formed in a portion of a driver circuit region in the display device, the frame margin of the display device can be narrowed.
摘要:
An object is to provide a semiconductor device in which defects are reduced and miniaturization is achieved while favorable characteristics are maintained. A semiconductor layer is formed; a first conductive layer is formed over the semiconductor layer; the first conductive layer is etched with use of a first resist mask to form a second conductive layer having a recessed portion; the first resist mask is reduced in size to form a second resist mask; the second conductive layer is etched with use of the second resist mask to form source and drain electrodes each having a projecting portion with a tapered shape at the peripheries; a gate insulating layer is formed over the source and drain electrodes to be in contact with part of the semiconductor layer; and a gate electrode is formed in a portion over the gate insulating layer and overlapping with the semiconductor layer.
摘要:
The present invention provides a method for manufacturing a highly reliable display device at a low cost with high yield. According to the present invention, a step due to an opening in a contact is covered with an insulating layer to reduce the step, and is processed into a gentle shape. A wiring or the like is formed to be in contact with the insulating layer and thus the coverage of the wiring or the like is enhanced. In addition, deterioration of a light-emitting element due to contaminants such as water can be prevented by sealing a layer including an organic material that has water permeability in a display device with a sealing material. Since the sealing material is formed in a portion of a driver circuit region in the display device, the frame margin of the display device can be narrowed.
摘要:
An embodiment is a thin film transistor which includes a gate electrode layer, a gate insulating layer provided so as to cover the gate electrode layer; a first semiconductor layer entirely overlapped with the gate electrode layer; a second semiconductor layer provided over and in contact with the first semiconductor layer and having a lower carrier mobility than the first semiconductor layer; an impurity semiconductor layer provided in contact with the second semiconductor layer; a sidewall insulating layer provided so as to cover at least a sidewall of the first semiconductor layer; and a source and drain electrode layers provided in contact with at least the impurity semiconductor layer. The second semiconductor layer may consist of parts which are apart from each other over the first semiconductor layer.
摘要:
The semiconductor element includes an oxide semiconductor layer on an insulating surface; a source electrode layer and a drain electrode layer over the oxide semiconductor layer; a gate insulating layer over the oxide semiconductor layer, the source electrode layer, and the drain electrode layer; and a gate electrode layer over the gate insulating layer. The source electrode layer and the drain electrode layer have sidewalls which are in contact with a top surface of the oxide semiconductor layer.
摘要:
Forming an insulating film on a surface of the single crystal semiconductor substrate, forming a fragile region in the single crystal semiconductor substrate by irradiating the single crystal semiconductor substrate with an ion beam through the insulating film, forming a bonding layer over the insulating film, bonding a supporting substrate to the single crystal semiconductor substrate by interposing the bonding layer between the supporting substrate and the single crystal semiconductor substrate, dividing the single crystal semiconductor substrate at the fragile region to separate the single crystal semiconductor substrate into a single crystal semiconductor layer attached to the supporting substrate, performing first dry etching treatment on a part of the fragile region remaining on the single crystal semiconductor layer, performing second dry etching treatment on a surface of the single crystal semiconductor layer subjected to the first etching treatment, and irradiating the single crystal semiconductor layer with laser light.
摘要:
An object is to provide a semiconductor device in which defects are reduced and miniaturization is achieved while favorable characteristics are maintained. A semiconductor layer is formed; a first conductive layer is formed over the semiconductor layer; the first conductive layer is etched with use of a first resist mask to form a second conductive layer having a recessed portion; the first resist mask is reduced in size to form a second resist mask; the second conductive layer is etched with use of the second resist mask to form source and drain electrodes each having a projecting portion with a tapered shape at the peripheries; a gate insulating layer is formed over the source and drain electrodes to be in contact with part of the semiconductor layer; and a gate electrode is formed in a portion over the gate insulating layer and overlapping with the semiconductor layer.