Abstract:
Fully human antibodies against a specific antigen can be prepared by administering the antigen to a transgenic animal which has been modified to produce such antibodies in response to antigenic challenge, but whose endogenous loci have been disabled. Various subsequent manipulations can be performed to obtain either antibodies per se or analogs thereof.
Abstract:
The present invention relates to transgenic non-human animals that are engineered to contain human immunoglobulin gene loci. In particular, animals in accordance with the invention possess human Ig loci that include plural variable (VH and Vκ) gene regions. Advantageously, the inclusion of plural variable region genes enhances the specificity and diversity of human antibodies produced by the animal. Further, the inclusion of such regions enhances and reconstitutes B-cell development to the animals, such that the animals possess abundant mature B-cells secreting extremely high affinity antibodies.
Abstract translation:本发明涉及被工程化以含有人免疫球蛋白基因座的转基因非人动物。 特别地,根据本发明的动物具有包含多个可变(V H H P和V kappa)基因区的人Ig位点。 有利地,包含多个可变区基因增强了由动物产生的人抗体的特异性和多样性。 此外,这些区域的包含增强和重建动物的B细胞发育,使得动物具有丰富的分泌极高亲和力抗体的成熟B细胞。
Abstract:
The present invention relates to transgenic non-human animals that are engineered to contain human immunoglobulin gene loci. In particular, animals in accordance with the invention possess human Ig loci that include plural variable (VH and Vκ) gene regions. Advantageously, the inclusion of plural variable region genes enhances the specificity and diversity of human antibodies produced by the animal. Further, the inclusion of such regions enhances and reconstitutes B-cell development to the animals, such that the animals possess abundant mature B-cells secreting extremely high affinity antibodies.
Abstract translation:本发明涉及被工程化以含有人免疫球蛋白基因座的转基因非人动物。 特别地,根据本发明的动物具有包含多个可变(V H H P和V kappa)基因区的人Ig位点。 有利地,包含多个可变区基因增强了由动物产生的人抗体的特异性和多样性。 此外,这些区域的包含增强和重建动物的B细胞发育,使得动物具有丰富的分泌极高亲和力抗体的成熟B细胞。
Abstract:
Antibodies with fully human variable regions against a specific antigen can be prepared by administering the antigen to a transgenic animal which has been modified to produce such antibodies in response to antigenic challenge, but whose endogenous loci have been disabled. Various subsequent manipulations can be performed to obtain either antibodies per se or analogs thereof.
Abstract:
Antibodies with fully human variable regions against a specific antigen can be prepared by administering the antigen to a transgenic animal which has been modified to produce such antibodies in response to antigenic challenge, but whose endogenous loci have been disabled. Various subsequent manipulations can be performed to obtain either antibodies per se or analogs thereof.
Abstract:
The present invention relates to transgenic non-human animals that are engineered to contain human immunoglobulin gene loci. In particular, animals in accordance with the invention possess human Ig loci that include plural variable (VH and Vκ) gene regions. Advantageously, the inclusion of plural variable region genes enhances the specificity and diversity of human antibodies produced by the animal. Further, the inclusion of such regions enhances and reconstitutes B-cell development to the animals, such that the animals possess abundant mature B-cells secreting extremely high affinity antibodies.
Abstract:
Fully human antibodies against a specific antigen can be prepared by administering the antigen to a transgenic animal which has been modified to produce such antibodies in response to antigenic challenge, but whose endogenous loci have been disabled. Various subsequent manipulations can be performed to obtain either antibodies per se or analogs thereof.
Abstract:
Antibodies with fully human variable regions against a specific antigen can be prepared by administering the antigen to a transgenic animal which has been modified to produce such antibodies in response to antigenic challenge, but whose endogenous loci have been disabled. Various subsequent manipulations can be performed to obtain either antibodies per se or analogs thereof.
Abstract:
Homologous recombination is employed to inactivate genes, particularly genes associated with MHC antigens. Particularly, each of the .beta..sub.2- microglobulin gene and the IFN-.gamma.R gene is inactivated for reducing or eliminating the expression of functional MHC antigens. The resulting cells may be used as universal donor cells. In addition, embryonic stem cells may be modified by homologous recombination for use in producing chimeric or transgenic mammalian hosts, which may be used as source of universal donor organs, or as models for drug and transplantation therapies. Methods for homologous recombination in non-transformed mammalian somatic cells are also described.
Abstract:
Homologous recombination is employed to inactivate genes, particularly genes associated with MHC antigens. Particularly, the .beta..sub.2 -microglobulin gene is inactivated for reducing or eliminating Class I MHC antigens. The resulting cells may be used as universal donors. In addition, embryonic stem cells may be modified by homologous recombination for use in producing chimeric or transgenic mammalian hosts, which may be used as source of universal donor organs, or as models for drug and transplantation therapies.