摘要:
A corrosion resistant component of a plasma chamber includes a liquid crystalline polymer. In a preferred embodiment, the liquid crystalline polymer (LCP) is provided on an aluminum component having an anodized or non-anodized surface. The liquid crystalline polymer can also be provided on an alumina component. The liquid crystalline polymer can be deposited by a method such as plasma spraying. The liquid crystalline polymer may also be provided as a preformed sheet or other shape adapted to cover the exposed surfaces of the reaction chamber. Additionally, the reactor components may be made entirely from liquid crystalline polymer by machining the component from a solid block of liquid crystalline polymer or molding the component from the polymer. The liquid crystalline polymer may contain reinforcing fillers such as glass or mineral fillers.
摘要:
Components of semiconductor processing apparatus are formed at least partially of erosion, corrosion and/or corrosion-erosion resistant ceramic materials. Exemplary ceramic materials can include at least one oxide, nitride, boride, carbide and/or fluoride of hafnium, strontium, lanthanum oxide and/or dysprosium. The ceramic materials can be applied as coatings over substrates to form composite components, or formed into monolithic bodies. The coatings ca protect substrates from physical and/or chemical attack. The ceramic materials can be used to form plasma exposed components of semiconductor processing apparatus to provide extended service lives.
摘要:
A corrosion resistant component of semiconductor processing equipment such as a plasma chamber comprises zirconia toughened ceramic material as an outermost surface of the component. The component can be made entirely of the ceramic material or the ceramic material can be provided as a coating on a substrate such as aluminum or aluminum alloy, stainless steel, or refractory metal. The zirconia toughened ceramic can be tetragonal zirconia polycrystalline (TZP) material, partially-stabilized zirconia (PSZ), or a zirconia dispersion toughened ceramic (ZTC) such as zirconia-toughened alumina (tetragonal zirconia particles dispersed in Al2O3). In the case of a ceramic zirconia toughened coating, one or more intermediate layers may be provided between the component and the ceramic coating. To promote adhesion of the ceramic coating, the component surface or the intermediate layer surface may be subjected to a surface roughening treatment prior to depositing the ceramic coating.
摘要翻译:诸如等离子体室的半导体加工设备的耐腐蚀部件包括作为部件的最外表面的氧化锆增韧陶瓷材料。 该组件可以完全由陶瓷材料制成,或者陶瓷材料可以作为涂层提供在诸如铝或铝合金,不锈钢或难熔金属的基底上。 氧化锆增韧陶瓷可以是四方晶氧化锆多晶(TZP)材料,部分稳定的氧化锆(PSZ)或氧化锆分散体增韧陶瓷(ZTC),如氧化锆增韧的氧化铝(分散在Al 2+中的四方晶氧化锆颗粒) SUB> O 3 3)。 在陶瓷氧化锆增韧涂层的情况下,可以在组件和陶瓷涂层之间提供一个或多个中间层。 为了促进陶瓷涂层的粘合,可以在沉积陶瓷涂层之前对组分表面或中间层表面进行表面粗糙化处理。
摘要:
A corrosion resistant component of semiconductor processing equipment such as a plasma chamber includes a boron nitride/yttria composite containing surface and process for manufacture thereof.
摘要:
A corrosion resistant component of semiconductor processing equipment such as a plasma chamber comprises zirconia toughened ceramic material as an outermost surface of the component. The component can be made entirely of the ceramic material or the ceramic material can be provided as a coating on a substrate such as aluminum or aluminum alloy, stainless steel, or refractory metal. The zirconia toughened ceramic can be tetragonal zirconia polycrystalline (TZP) material, partially-stabilized zirconia (PSZ), or a zirconia dispersion toughened ceramic (ZTC) such as zirconia-toughened alumina (tetragonal zirconia particles dispersed in Al2O3). In the case of a ceramic zirconia toughened coating, one or more intermediate layers may be provided between the component and the ceramic coating. To promote adhesion of the ceramic coating, the component surface or the intermediate layer surface may be subjected to a surface roughening treatment prior to depositing the ceramic coating.
摘要:
A method for etching selected portions of an aluminum-containing layer of a layer stack that is disposed on a substrate. The aluminum-containing layer is disposed below a photoresist mask having a pattern thereon. The method includes providing a plasma processing chamber and positioning the substrate having thereon the layer stack, including the aluminum containing layer and the photoresist mask, within the plasma processing chamber. The method further includes flowing an etchant source gas that comprises HCl, a chlorine-containing source gas, and an oxygen-containing source gas into the plasma processing chamber. The flow rate of the oxygen-containing source gas is less than about 20 percent of a total flow rate of the etchant source gas. There is also included striking a plasma out of the etchant source gas, wherein the plasma is employed to etch at least partially through the aluminum-containing layer.
摘要:
A corrosion resistant component of a plasma chamber includes a liquid crystalline polymer. In a preferred embodiment, the liquid crystalline polymer (LCP) is provided on an aluminum component having an anodized or non-anodized surface. The liquid crystalline polymer can also be provided on an alumina component. The liquid crystalline polymer can be deposited by a method such as plasma spraying. The liquid crystalline polymer may also be provided as a preformed sheet or other shape adapted to cover the exposed surfaces of the reaction chamber. Additionally, the reactor components may be made entirely from liquid crystalline polymer by machining the component from a solid block of liquid crystalline polymer or molding the component from the polymer. The liquid crystalline polymer may contain reinforcing fillers such as glass or mineral fillers.
摘要:
In one of the many embodiments, a method for processing a substrate is provided which includes generating a first fluid meniscus and a second fluid meniscus on a surface of the substrate where the first fluid meniscus being substantially adjacent to the second fluid meniscus. The meniscus also includes substantially separating the first fluid meniscus and the second fluid meniscus with a barrier.
摘要:
In one of the many embodiments, a method for processing a substrate is disclosed which includes generating a first fluid meniscus and a second fluid meniscus at least partially surrounding the first fluid meniscus wherein the first fluid meniscus and the second fluid meniscus are generated on a surface of the substrate.