Abstract:
A Group III-V semiconductor optoelectronic device provides for visible wavelength light output having a more laterally uniform, high power beam profile, albeit still quasi-Gaussian. A number of factors contribute to the enhanced profile including an improvement in reducing band offset of the Group III-V deposited layers improving carrier density through a decrease in the voltage drop require to generate carrier flow; reduction of contaminants in the growth of Group III-V AlGaInP-containing layers with compositional Al, providing for quality material necessary to achieve operation at the desired visible wavelengths; the formation of an optical resonator cavity that provides, in part, weak waveguiding of the propagating light; and the utilization of a mechanism to provide for beam spreading and filing in a beam diverging gain section prior to actively aggressive gain pumping of the propagating light in the device.
Abstract:
An optical amplifier semiconductor device which is differentially pumped and a master oscillator power amplifier (MOPA) device employing such an amplifier. The amplifier allows the light propagating therein to diverge along at least part of its length, and may be a flared amplifier having a gain region that increases in width toward its output at a rate that equals or exceeds the divergence of the light. The amplifier is pumped with a current density at its input end which is smaller than the current density used to pump the output end for maintaining coherence of the beam to high power levels. Differential pumping may be both longitudinal and lateral within the amplifier. A single mode preamplifier section may be optically coupled to the input end of the amplifier. The amplifier input may have a width which is the same as or wider than that of the preamplifier output. The preamplifier may have a constant mode width or may be tapered to alter the divergence of the beams provided to the amplifier section. The laser oscillator in the MOPA device may be a single mode DBR laser diode monolithically integrated on the same substrate as the optical amplifier. Laser sources external to an amplifier chip may also be used. The input portion of the amplifier or the preamplifier section, if present, may be modulated. The laser oscillator might also be modulated if it has a high Q cavity. Tunable laser oscillators are also disclosed.
Abstract:
A Group III-V semiconductor optoelectronic device provides for visible wavelength light output having a more laterally uniform, high power beam profile, albeit still quasi-Gaussian. A number of factors contribute to the enhanced profile including an improvement in reducing band offset of the Group III-V deposited layers improving carrier density through a decrease in the voltage drop require to generate carrier flow; reduction of contaminants in the growth of Group III-V AlGaInP-containing layers with compositional Al, providing for quality material necessary to achieve operation at the desired visible wavelengths; the formation of an optical resonator cavity that provides, in part, weak waveguiding of the propagating light; and the utilization of a mechanism to provide for beam spreading and filing in a beam diverging gain section prior to actively aggressive gain pumping of the propagating light in the device.
Abstract:
A Group III-V semiconductor optoelectronic device provides for visible wavelength light output having a more laterally uniform, high power beam profile, albeit still quasi-Gaussian. A number of factors contribute to the enhanced profile including an improvement in reducing band offset of the Group III-V deposited layers improving carrier density through a decrease in the voltage drop require to generate carrier flow; reduction of contaminants in the growth of Group III-V AlGaInP-containing layers with compositional Al, providing for quality material necessary to achieve operation at the desired visible wavelengths; the formation of an optical resonator cavity that provides, in part, weak waveguiding of the propagating light; and the utilization of a mechanism to provide for beam spreading and filing in a beam diverging gain section prior to actively aggressive gain pumping of the propagating light in the device.
Abstract:
A Group III-V semiconductor optoelectronic device provides for visible wavelength light output having a more laterally uniform, high power beam profile, albeit still quasi-Gaussian. A number of factors contribute to the enhanced profile including an improvement in reducing band offset of the Group III-V deposited layers improving carrier density through a decrease in the voltage drop required to generate carrier flow; reduction of contaminants in the growth of Group III-V AlGaInP-containing layers with compositional Al, providing for quality material necessary to achieve operation at the desired visible wavelengths; the formation of an optical resonator cavity that provides, in part, weak waveguiding of the propagating light; and the utilization of a mechanism to provide for beam spreading and filing in a beam diverging gain section prior to actively aggressive gain pumping of the propagating light in the device.
Abstract:
A high power, single lateral mode semiconductor laser has a waveguide with regions of different widths coupled by a tapered region. The laser has a laterally confining optical waveguide having a highly reflecting first end and a second end. The optical waveguide has a first portion extending from the first end and a second portion extending from the second end. The first and second portions are coupled by a tapered waveguide. A width of the first portion is less than a width of the second portion. The first portion filters lateral optical modes higher than a fundamental lateral optical mode. An output is emitted from the second end of the optical waveguide.
Abstract:
A Group III-V semiconductor optoelectronic device provides for visible wavelength light output having a more laterally uniform, high power beam profile, albeit still quasi-Gaussian. A number of factors contribute to the enhanced profile including an improvement in reducing band offset of the Group III-V deposited layers improving carrier density through a decrease in the voltage drop required to generate carrier flow; reduction of contaminants in the growth of Group III-V AlGaInP-containing layers with compositional Al, providing for quality material necessary to achieve operation at the desired visible wavelengths; the formation of an optical resonator cavity that provides, in part, weak waveguiding of the propagating light; and the utilization of a mechanism to provide for beam spreading and filing in a beam diverging gain section prior to actively aggressive gain pumping of the propagating light in the device.
Abstract:
An optical gain medium comprising, for example, an optical semiconductor device which is differentially pumped and a master oscillator power amplifier (MOPA) device employing such an amplifier. The gain medium may have a linear stripe region or a diverging stripe region that allows the light propagating therein to diverge along at least part of its length, such as a flared or tapered amplifier having a gain region that increases in width toward its output at a rate that equals or exceeds the divergence of the light. The amplifier is pumped with a current density at its input end which is smaller than the current density used to pump the output end for maintaining coherence of the beam to high power levels employing differential pumping. Differential pumping may be both longitudinal and lateral within the amplifier and may be patterned to reduce the peak modal gain observed longitudinally along and/or laterally across the pumped stripe region of the gain medium so that he experienced modal gain of the propagating light is more balanced along the length of the stripe region, i.e., rendered significantly more uniform in distribution, providing for higher diffraction limited performance without optical filamentation formation.
Abstract:
A travelling-wave semiconductor laser amplifier having suppressed self-oscillation is provided. When incorporated into a master oscillator power amplifier device, such a device has improved light output versus amplifier current characteristics. Also provided is a method for suppressing self-oscillation in travelling-wave semiconductor laser amplifier structures for improving the characteristics of the device into which the amplifier is incorporated.