Abstract:
Ferroelectric capacitor structures for integrated decoupling capacitors and the like. The ferroelectric capacitor structure includes two or more ferroelectric capacitors connected in series with one another between voltage nodes. The series connection of the ferroelectric capacitors reduces the applied voltage across each, enabling the use of rough ferroelectric dielectric material, such as PZT deposited by MOCVD. Matched construction of the series-connected capacitors, as well as uniform polarity of the applied voltage across each, is beneficial in reducing the maximum voltage across any one of the capacitors, reducing the vulnerability to dielectric breakdown.
Abstract:
A method of manufacturing a semiconductor device is presented. In one aspect, the method comprises forming conductive and ferroelectric material layers on a semiconductor substrate. The material layers are patterned to form electrodes and a ferroelectric layer of a ferroelectric capacitor, wherein a conductive noble metal-containing polymer is generated on sidewalls of the ferroelectric capacitor. The method also comprises converting the conductive noble metal-containing polymer into a non-conducting metal oxide. Converting includes forming a water-soluble metal salt from the conductive noble metal-containing polymer and reacting the water-soluble metal salt with an acqueous acidic solution to form a metal hydroxide. Converting also includes oxidizing the metal hydroxide to form the non-conducting metal oxide.
Abstract:
Methods (200) and systems (108) are provided for reading data from ferroelectric memory cells (106) in which charge is removed from a sense amp input (SABL/SABLB) prior to application of a plateline signal (PL) to the target cell capacitor (CFE). Where the sense amp input (SABL/SABLB) is initially precharged to zero volts, the extraction of charge provides a negative voltage on the data bitline (BL/BLB) when the plateline signal (PL) is applied, allowing adequate voltage to be applied across the cell capacitor (CFE) together with reduced plateline voltages (PL).
Abstract:
Ferroelectric capacitor structures for integrated decoupling capacitors and the like. The ferroelectric capacitor structure includes two or more ferroelectric capacitors connected in series with one another between voltage nodes. The series connection of the ferroelectric capacitors reduces the applied voltage across each, enabling the use of rough ferroelectric dielectric material, such as PZT deposited by MOCVD. Matched construction of the series-connected capacitors, as well as uniform polarity of the applied voltage across each, is beneficial in reducing the maximum voltage across any one of the capacitors, reducing the vulnerability to dielectric breakdown.
Abstract:
An integrated circuit contains lower components in the substrate, a PMD layer, upper components over the PMD layer, lower contacts in the PMD layer connecting some upper components to some lower components, an ILD layer over the upper components, metal interconnect lines over the ILD layer, and upper contacts connecting some upper components to some metal interconnect lines, and also includes annular stacked contacts of lower annular contacts aligned with upper annular contacts. The lower contacts and upper contacts each have a metal liner and a contact metal on the liner. The lower annular contacts have at least one ring of liner metal and contact metal surrounding a pillar of PMD material, and the upper contacts have at least one ring of liner metal and contact metal surrounding a pillar of ILD material. The annular stacked contacts connect the metal interconnects to the lower components.
Abstract:
A method of manufacturing a semiconductor device. The method comprises forming conductive and ferroelectric material layers on a semiconductor substrate. The material layers are patterned to form electrodes and a ferroelectric layer of a ferroelectric capacitor, wherein a conductive residue is generated on sidewalls of the ferroelectric capacitor as a by-product of the patterning. The method also comprises removing the conductive residue using a physical plasma etch clean-up process that includes maintaining a substrate temperature that is greater than about 60° C.
Abstract:
An integrated circuit contains lower components in the substrate, a PMD layer, upper components over the PMD layer, lower contacts in the PMD layer connecting some upper components to some lower components, an ILD layer over the upper components, metal interconnect lines over the ILD layer, and upper contacts connecting some upper components to some metal interconnect lines, and also includes annular stacked contacts of lower annular contacts aligned with upper annular contacts. The lower contacts and upper contacts each have a metal liner and a contact metal on the liner. The lower annular contacts have at least one ring of liner metal and contact metal surrounding a pillar of PMD material, and the upper contacts have at least one ring of liner metal and contact metal surrounding a pillar of ILD material. The annular stacked contacts connect the metal interconnects to the lower components.
Abstract:
A method of manufacturing a semiconductor device is presented. In one aspect, the method comprises forming conductive and ferroelectric material layers on a semiconductor substrate. The material layers are patterned to form electrodes and a ferroelectric layer of a ferroelectric capacitor, wherein a conductive noble metal-containing polymer is generated on sidewalls of the ferroelectric capacitor. The method also comprises converting the conductive noble metal-containing polymer into a non-conducting metal oxide. Converting includes forming a water-soluble metal salt from the conductive noble metal-containing polymer and reacting the water-soluble metal salt with an acqueous acidic solution to form a metal hydroxide. Converting also includes oxidizing the metal hydroxide to form the non-conducting metal oxide.
Abstract:
A memory with mechanisms for enhancing storage states without boosting voltages to levels that damage storage cell structures. A storage cell according to the present teachings includes a storage structure capable of switching storage states. A memory according to the present teachings includes means for writing the storage cell by applying a first voltage to a first node of the storage structure and for applying a second voltage to a second node of the storage structure such that the first and second voltages have opposite polarities.
Abstract:
A method of manufacturing a semiconductor device. The method comprises forming conductive and ferroelectric material layers on a semiconductor substrate. The material layers are patterned to form electrodes and a ferroelectric layer of a ferroelectric capacitor, wherein a conductive residue is generated on sidewalls of the ferroelectric capacitor as a by-product of the patterning. The method also comprises removing the conductive residue using a physical plasma etch clean-up process that includes maintaining a substrate temperature that is greater than about 60° C.