摘要:
A method of manufacturing a semiconductor device is presented. In one aspect, the method comprises forming conductive and ferroelectric material layers on a semiconductor substrate. The material layers are patterned to form electrodes and a ferroelectric layer of a ferroelectric capacitor, wherein a conductive noble metal-containing polymer is generated on sidewalls of the ferroelectric capacitor. The method also comprises converting the conductive noble metal-containing polymer into a non-conducting metal oxide. Converting includes forming a water-soluble metal salt from the conductive noble metal-containing polymer and reacting the water-soluble metal salt with an acqueous acidic solution to form a metal hydroxide. Converting also includes oxidizing the metal hydroxide to form the non-conducting metal oxide.
摘要:
A method of manufacturing a semiconductor device is presented. In one aspect, the method comprises forming conductive and ferroelectric material layers on a semiconductor substrate. The material layers are patterned to form electrodes and a ferroelectric layer of a ferroelectric capacitor, wherein a conductive noble metal-containing polymer is generated on sidewalls of the ferroelectric capacitor. The method also comprises converting the conductive noble metal-containing polymer into a non-conducting metal oxide. Converting includes forming a water-soluble metal salt from the conductive noble metal-containing polymer and reacting the water-soluble metal salt with an acqueous acidic solution to form a metal hydroxide. Converting also includes oxidizing the metal hydroxide to form the non-conducting metal oxide.
摘要:
A method of manufacturing a semiconductor device. The method comprises forming conductive and ferroelectric material layers on a semiconductor substrate. The material layers are patterned to form electrodes and a ferroelectric layer of a ferroelectric capacitor, wherein a conductive residue is generated on sidewalls of the ferroelectric capacitor as a by-product of the patterning. The method also comprises removing the conductive residue using a physical plasma etch clean-up process that includes maintaining a substrate temperature that is greater than about 60° C.
摘要:
A method of manufacturing a semiconductor device. The method comprises forming conductive and ferroelectric material layers on a semiconductor substrate. The material layers are patterned to form electrodes and a ferroelectric layer of a ferroelectric capacitor, wherein a conductive residue is generated on sidewalls of the ferroelectric capacitor as a by-product of the patterning. The method also comprises removing the conductive residue using a physical plasma etch clean-up process that includes maintaining a substrate temperature that is greater than about 60° C.
摘要:
The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively apply strain to multiple regions of a semiconductor device. A semiconductor device having one or more regions is provided (102). A strain inducing liner is formed over the semiconductor device (104). A selection mechanism, such as a layer of photoresist or UV reflective coating is applied to the semiconductor device to select a region (106). The selected region is treated with a stress altering treatment that alters a type and/or magnitude of stress produced by the selected region (108).
摘要:
The present invention provides a process for improving the hardness and/or modulus of elasticity of a dielectric layer and a method for manufacturing an integrated circuit. The process for improving the hardness and/or modulus of elasticity of a dielectric layer, among other steps, includes providing a dielectric layer having a hardness and a modulus of elasticity, and subjecting the dielectric layer to an energy beam, thereby causing the hardness or modulus of elasticity to increase in value.
摘要:
The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively apply strain to multiple regions of a semiconductor device. A semiconductor device having one or more regions is provided (102). A strain inducing liner is formed over the semiconductor device (104). A selection mechanism, such as a layer of photoresist or UV reflective coating is applied to the semiconductor device to select a region (106). The selected region is treated with a stress altering treatment that alters a type and/or magnitude of stress produced by the selected region (108).
摘要:
One aspect of the invention relates to a method of removing contaminants from a low-k film. The method involves forming a sacrificial layer over the contaminated film. The contaminants combine with the sacrificial layer and are removed by etching away the sacrificial layer. An effective material for the sacrificial layer is, for example, a silicon carbide. The method can be used to prevent the occurrence of pattern defects in chemically amplified photoresists formed over low-k films.
摘要:
A dual damascene process flow for forming interconnect lines and vias in which at least part of the via (116) is etched prior to the trench etch. A low-k material such as a thermoset organic polymer is used for the ILD (106) and IMD (110). After the at least partial via etch, a BARC (120) is deposited over the structure including in the via (116). Then, the trench (126) is patterned and etched. Although at least some of the BARC (120) material is removed during the trench etch, the bottom of the via (116) is protected.
摘要:
A method of fabricating a semiconductor MOS device and the device wherein there is initially provided a semiconductor substrate having a gate insulator layer thereon and intimate therewith. A region of one of a nitride or oxynitride is formed at the surface region of the layer remote from the substrate having sufficient nitride to act as a barrier against the migration of dopant therethrough to the substrate. A doped polysilicon gate or a metal gate is then formed over the region of a nitride or oxynitride. The amount of nitride in the insulator layer intimate and closely adjacent to the substrate is insufficient to materially alter the characteristics of the device being fabricated. The substrate is preferably silicon, the oxide and nitride are preferably those of silicon and the dopant preferably includes boron. The step of forming a region of one of a nitride or oxynitride includes the step of injecting neutral atomic nitrogen into the surface of the gate insulator layer surface remote from the substrate. The region of one of a nitride or oxynitride is from about 1 to about 2 monolayers.