摘要:
Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to standard cell architectures without power delivery space allocation. Other embodiments may be described or claimed.
摘要:
Embodiments include semiconductor devices. In an embodiment, a semiconductor device comprises a first non-planar transistor over a substrate and a second non-planar transistor over the substrate and parallel to the first non-planar transistor. In an embodiment, a gate structure is over the first non-planar transistor and the second non-planar transistor. In an embodiment, a power rail is between the first non-planar transistor and the second non-planar transistor. In an embodiment, a top surface of the power rail is below a top surface of a gate structure.
摘要:
Described herein are integrated circuit structures having versatile channel placement, and methods of fabricating integrated circuit structures having versatile channel placement. In an example, an integrated circuit structure includes a first vertical stack of horizontal nanowires having a first width. A second vertical stack of horizontal nanowires is immediately neighboring and parallel with the first vertical stack of horizontal nanowires and has a second width greater than the first width. A third vertical stack of horizontal nanowires is immediately neighboring and parallel with the second vertical stack of horizontal nanowires and has the first width.
摘要:
Embodiments herein describe techniques for a transistor above the substrate. The transistor includes a first gate dielectric layer with a first gate dielectric material above a gate electrode, and a second dielectric layer with a second dielectric material above a portion of the first gate dielectric layer. A first portion of a channel layer overlaps with only the first gate dielectric layer, while a second portion of the channel layer overlaps with the first gate dielectric layer and the second dielectric layer. A first portion of a contact electrode overlaps with the first portion of the channel layer, and overlaps with only the first gate dielectric layer, while a second portion of the contact electrode overlaps with the second portion of the channel layer, and overlaps with the first gate dielectric layer and the second dielectric layer. Other embodiments may be described and/or claimed.
摘要:
Techniques are disclosed for customization of fin-based transistor devices to provide a diverse range of channel configurations and/or material systems within the same integrated circuit die. In accordance with one example embodiment, sacrificial fins are removed and replaced with custom semiconductor material of arbitrary composition and strain suitable for a given application. In one such case, each of a first set of the sacrificial fins is recessed or otherwise removed and replaced with a p-type material, and each of a second set of the sacrificial fins is recessed or otherwise removed and replaced with an n-type material. The p-type material can be completely independent of the process for the n-type material, and vice-versa. Numerous other circuit configurations and device variations are enabled using the techniques provided herein.
摘要:
Strained gate-all-around semiconductor devices formed on globally or locally isolated substrates are described. For example, a semiconductor device includes a semiconductor substrate. An insulating structure is disposed above the semiconductor substrate. A three-dimensional channel region is disposed above the insulating structure. Source and drain regions are disposed on either side of the three-dimensional channel region and on an epitaxial seed layer. The epitaxial seed layer is composed of a semiconductor material different from the three-dimensional channel region and disposed on the insulating structure. A gate electrode stack surrounds the three-dimensional channel region with a portion disposed on the insulating structure and laterally adjacent to the epitaxial seed layer.
摘要:
Gate contact structures disposed over active portions of gates and methods of forming such gate contact structures are described. For example, a semiconductor structure includes a substrate having an active region and an isolation region. A gate structure has a portion disposed above the active region and a portion disposed above the isolation region of the substrate. Source and drain regions are disposed in the active region of the substrate, on either side of the portion of the gate structure disposed above the active region. A gate contact structure is disposed on the portion of the gate structure disposed above the active region of the substrate.
摘要:
Embodiments of the present disclosure describe multi-threshold voltage devices and associated techniques and configurations. In one embodiment, an apparatus includes a semiconductor substrate, a channel body disposed on the semiconductor substrate, a first gate electrode having a first thickness coupled with the channel body and a second gate electrode having a second thickness coupled with the channel body, wherein the first thickness is greater than the second thickness. Other embodiments may be described and/or claimed.
摘要:
An embodiment integrates memory, such as spin-torque transfer magnetoresistive random access memory (STT-MRAM) within a logic chip. The STT-MRAM includes a magnetic tunnel junction (MTJ) with an upper MTJ layer, lower MTJ layer, and tunnel barrier directly contacting the upper MTJ layer and the lower MTJ layer; wherein the upper MTJ layer includes an upper MTJ layer sidewall and the lower MTJ layer includes a lower MTJ sidewall horizontally offset from the upper MTJ layer. Another embodiment includes a memory area, comprising a MTJ, and a logic area located on a substrate; wherein a horizontal plane intersects the MTJ, a first Inter-Layer Dielectric (ILD) material adjacent the MTJ, and a second ILD material included in the logic area, the first and second ILD materials being unequal to one another. In an embodiment the first and second ILDs directly contact one another. Other embodiments are described herein.
摘要:
A hard mask etch stop is formed on the top surface of tall fins to preserve the fin height and protect the top surface of the fin from damage during etching steps of the transistor fabrication process. In an embodiment, the hard mask etch stop is formed using a dual hard mask system, wherein a hard mask etch stop layer is formed over the surface of a substrate, and a second hard mask layer is used to pattern a fin with a hard mask etch stop layer on the top surface of the fin. The second hard mask layer is removed, while the hard mask etch stop layer remains to protect the top surface of the fin during subsequent fabrication steps.