摘要:
The object of the present invention is to provide an exhaust gas purifying catalyst that can achieve high purification performance while suppressing H2S emissions. The object is solved by an exhaust gas purifying catalyst in which the lower layer of the catalyst coating layer comprises a ceria-zirconia composite oxide having a pyrochlore-type ordered array structure, in which the ceria-zirconia composite oxide contains at least one additional element selected from the group consisting of praseodymium, lanthanum, and yttrium at 0.5 to 5.0 mol % in relation to the total cation amount, and the molar ratio of (cerium+additional element):(zirconium) is within the range from 43:57 to 48:52.
摘要:
An excellent oxygen storage capacity is achieved even in the case used for a long period of time under high temperature conditions. An oxygen storage material contains a first particle made of a composite oxide of cerium and zirconium or a composite oxide of cerium, a rare-earth element other than cerium and zirconium, a second particle including a composite oxide of a rare-earth element, an alkaline-earth element and zirconium, and a precious metal. A part of the precious metal forms a solid solution with the composite oxide included in the second particle.
摘要:
A particulate inorganic mixed oxide comprising: aluminum; zirconium; cerium; lanthanum and an additional element selected from the group consisting of neodymium and praseodymium, wherein the inorganic mixed oxide has at least 80% of primary particles with article diameters of 100 nm or less, and at least a part of the primary particles have an enriched surface region where the additional element is locally increased in a surface layer portion thereof.
摘要:
The present invention provides an exhaust gas purification catalyst comprising a base material, and a two or more layered catalyst coating layer, formed on the base material, wherein the two or more layers have upper and lower layers, and wherein the upper layer contains a large amount of noble metal per liter of the base material more than that of the lower layer, and the lower layer contains a large amount of an oxygen storage/release material per liter of the base material more than that of the upper layer. This exhaust gas purification catalyst has more excellent H2S purifying performance than conventional catalysts while maintaining purifying performance against NOx and the other exhaust gas components.
摘要:
A hexagonal-cell honeycomb carrier body, made of cordierite ceramic, for use in a carrier of a catalyst of purifying exhaust gas is disclosed as including a large number of hexagonal cells surrounded with cell walls formed in a hexagonal lattice pattern and a cylindrical skin layer covering outer circumferential sidewalls of the hexagonal cells. The hexagonal-cell honeycomb carrier body has GSA (Geometric Surface Area) of 3.5 mmW or more. A hexagonal-cell honeycomb catalyst body comprises the hexagonal-cell honeycomb carrier body and a catalyst layer which covers a surface of the hexagonal-cell honeycomb carrier body.
摘要:
A catalyst for purification of exhaust gases, produced by use of a catalyst component A, a catalyst component B, and a binder, the catalyst component A being produced by supporting Rh on a catalyst support for Rh, having a CO2 adsorption amount per unit weight of from 25 μmol·g−1 to 60 μmol·g−1, and having a CO2 adsorption amount per unit specific surface area of from 0.2 μmol·m−2·g1 to 2.3 μmol·m−2·g1, the catalyst having a CO2 adsorption amount per unit weight of from 18 μmol·g−1 to 60 μmol·g−1 and a CO2 adsorption amount per unit specific surface area of from 0.2 μmol·m−2·g1 to 2.5 μmol·m−2·g1, and a ratio of the CO2 adsorption amount per unit weight of the catalyst to the CO2 adsorption amount per unit weight of the catalyst component A [(CO2 adsorption amount of the catalyst/CO2 adsorption amount of the catalyst component A)×100] being 75% or more.
摘要:
A high heat-resistant catalyst support comprises an amorphous composite oxide which is constituted by:(i) an NOx storage component comprising an oxide of at least one element selected from the group consisting of alkali metals, alkaline-earth metals and rare-earth elements,(ii) alumina (Al.sub.2 O.sub.3); and(iii) at least one element selected from the group consisting of titania (TiO.sub.2), zirconia (ZrO.sub.2) and silica (SiO.sub.2).Furthermore, TiO.sub.2, ZrO.sub.2 and SiO.sub.2 are acidic, and at least one element selected from the group consisting of TiO.sub.2, ZrO.sub.2 and SiO.sub.2 is highly dispersed to form composite. So, SOx having acidity is prevented from approaching the NOx storage component, and sulfur poisoning is prevented. Moreover, bonding force of the NOx storage component to the catalyst support strengthens, and the NOx storage component is prevented from being scattered.
摘要:
The object of the present invention is to provide an exhaust gas purifying catalyst that can achieve high purification performance while suppressing H2S emissions. The object is solved by an exhaust gas purifying catalyst in which the lower layer of the catalyst coating layer comprises a ceria-zirconia composite oxide having a pyrochlore-type ordered array structure, in which the ceria-zirconia composite oxide contains at least one additional element selected from the group consisting of praseodymium, lanthanum, and yttrium at 0.5 to 5.0 mol % in relation to the total cation amount, and the molar ratio of (cerium+additional element):(zirconium) is within the range from 43:57 to 48:52.
摘要:
The object of the present invention is to provide an exhaust gas purifying catalyst that can achieve high purification performance while suppressing H2S emissions. The object is solved by an exhaust gas purifying catalyst in which the top layer of a catalyst coating layer comprises a ceria-zirconia composite oxide having a pyrochlore-type ordered array structure, in which the ceria-zirconia composite oxide contains at least one additional element selected from the group consisting of praseodymium, lanthanum, and yttrium at 0.5 to 5.0 mol % in relation to the total cation amount, and the molar ratio of (cerium+additional element):(zirconium) is within the range from 43:57 to 48:52.
摘要:
A multilayer capacitor comprises a capacitor element body constituted by a plurality of laminated dielectric layers; first and second signal terminal electrodes and a ground terminal electrode which are arranged on an outer surface of the capacitor element body; and a ground electrode, first and second signal electrodes, and an intermediate internal electrode which are arranged within the capacitor element body. The first signal electrode is connected to the first signal terminal electrode, while the second signal electrode is connected to the second signal terminal electrode. The ground electrode is connected to the ground terminal electrode and has a first region overlapping the first signal electrode in a first direction in which the plurality of dielectric layers are laminated and a second region overlapping the second signal electrode in the first direction. The intermediate internal electrode is arranged such as to be separated from the first and second signal terminal electrodes and the ground terminal electrode and positioned between the first signal electrode and the ground electrode and between the second signal electrode and the ground electrode. The intermediate internal electrode has a region overlapping the first region in the first direction and a region overlapping the second region in the first direction.