Abstract:
In a lithographic projection apparatus, a structure surrounds a space between the projection system and a substrate table of the lithographic projection apparatus. Gas is used between the structure and the surface of the substrate to contain liquid in the space.
Abstract:
A method of exposing a substrate (e.g. in a lithographic apparatus comprising a substrate table to support a substrate) according to one embodiment of the invention includes performing first and a second height measurement of a part of at least one substrate with a first and second sensor, generating and storing an offset error map based on a difference between the measurements; generating and storing a height map of portions of the substrate (or another substrate that has had a similar processing as the part) by performing height measurements with the first sensor and correcting this height map by means of the offset error map; and exposing the substrate (or the other substrate).
Abstract:
In an off-axis levelling procedure a height map of the substrate is generated at a measurement station. The height map is referenced to a physical reference surface of the substrate table. The physical reference surface may be a surface in which is inset a transmission image sensor. At the exposure station the height of the physical reference surface is measured and related to the focal plane of the projection lens. The height map can then be used to determine the optimum height and/or tilt of substrate table to position the exposure area on the substrate in best focus during exposure. The same principles can be applied to (reflective) masks.
Abstract:
In an off-axis levelling procedure a height map of the substrate is generated at a measurement station. The height map is referenced to a physical reference surface of the substrate table. The physical reference surface may be a surface in which is inset a transmission image sensor. At the exposure station the height of the physical reference surface is measured and related to the focal plane of the projection lens. The height map can then be used to determine the optimum height and/or tilt of substrate table to position the exposure area on the substrate in best focus during exposure. The same principles can be applied to (reflective) masks.
Abstract:
In a single or multiple stage lithography apparatus, a table provides a confining surface to a liquid supply system during, for example, substrate table exchange and/or substrate loading and unloading. In an embodiment, the table has a sensor to make a measurement of the projection beam during, for example, substrate table exchange and/or substrate loading and unloading.
Abstract:
In a lithographic projection apparatus, a structure surrounds a space between the projection system and a substrate table of the lithographic projection apparatus. A gas seal is formed between said structure and the surface of said substrate to contain liquid in the space.
Abstract:
A map of the surface of a substrate is generated at a measurement station. The substrate is then moved to where a space between a projection lens and the substrate is filled with a liquid. The substrate is then aligned using, for example, a transmission image sensor and, using the previous mapping, the substrate can be accurately exposed. Thus the mapping does not take place in a liquid environment.
Abstract:
In an off-axis levelling procedure a height map of the substrate is generated at a measurement station. The height map is referenced to a physical reference surface of the substrate table. The physical reference surface may be a surface in which is inset a transmission image sensor. At the exposure station the height of the physical reference surface is measured and related to the focal plane of the projection lens. The height map can then be used to determine the optimum height and/or tilt of substrate table to position the exposure area on the substrate in best focus during exposure. The same principles can be applied to (reflective) masks.
Abstract:
A lithographic projection apparatus includes a beam production system for projecting a patterned beam of radiation onto a target portion of a substrate, and a support table for supporting an article. The support table has a support surface and an array of protrusions extending from the support surface to support the article on the protrusions. The apparatus also includes a detector for detecting height deviations of the protrusions that affect a surface flatness of the article, a height adjustment device arranged to independently modify a height of the individual protrusions when the support table is operable in the apparatus, and a controller coupled between the detector and the height adjustment device and arranged to control the height adjustment device to adjust the height of the protrusions corresponding to the detected height deviations of the protrusions that affect the surface flatness of the article.
Abstract:
A lithographic apparatus and device manufacturing method makes use of a liquid confined in a reservoir between the projection system and the substrate. Bubbles forming in the liquid from dissolved atmospheric gases or from out-gassing from apparatus elements exposed to the liquid are detected and/or removed so that they do not interfere with exposure and lead to printing defects on the substrate. Detection may be carried out by measuring the frequency dependence of ultrasonic attenuation in the liquid and bubble removal may be implemented by degassing and pressurizing the liquid, isolating the liquid from the atmosphere, using liquids of low surface tension, providing a continuous flow of liquid through the imaging field, and/or phase shifting ultrasonic standing-wave node patterns.