摘要:
A non-invasive ventilation system may include an interface. The interface may include at least one gas delivery jet nozzle adapted to be positioned in free space and aligned to directly deliver ventilation gas into an entrance of a nose. The at least one gas delivery jet nozzle may be connected to a pressurized gas supply. The ventilation gas may entrain ambient air to elevate lung pressure, elevate lung volume, decrease the work of breathing or increase airway pressure, and wherein the ventilation gas is delivered in synchrony with phases of breathing. A support for the at least one gas delivery jet nozzle may be provided. A breath sensor may be in close proximity to the entrance of the nose. A patient may spontaneous breathe ambient air through the nose without being impeded by the interface.
摘要:
In accordance with the present disclosure, there is provided a mask for achieving positive pressure mechanical ventilation (inclusive of CPAP, ventilator support, critical care ventilation, emergency applications), and a method for a operating a ventilation system including such mask. The mask of the present disclosure includes a piloted exhalation valve that is used to achieve the target pressures/flows to the patient. The pilot for the valve may be pneumatic and driven from the gas supply tubing from the ventilator. The pilot may also be a preset pressure derived in the mask, a separate pneumatic line from the ventilator, or an electro-mechanical control. The mask of the present disclosure may further include a heat and moisture exchanger (HME) which is integrated therein.
摘要:
In accordance with the present invention, there is provided a mask for achieving positive pressure mechanical ventilation (inclusive of CPAP, ventilator support, critical care ventilation, emergency applications), and a method for a operating a ventilation system including such mask. The mask of the present invention includes a piloted exhalation valve that is used to achieve the target pressures/flows to the patient. The pilot for the valve may be pneumatic and driven from the gas supply tubing from the ventilator. The pilot may also be a preset pressure derived in the mask, a separate pneumatic line from the ventilator, or an electro-mechanical control. The mask of the present invention may further include a heat and moisture exchanger (HME) which is integrated therein.
摘要:
Systems and methods may include a gas source, a gas delivery circuit, and a nasal interface allowing breathing ambient air through the nasal interface. A gas flow path through the nasal interface may have a distal gas flow path opening. A nozzle may be associated with a proximal end of the nasal interface a distance from the distal end gas flow path opening. At least a portion of an entrainment port may be between the nozzle and the distal end gas flow opening. The nozzle may deliver gas into the nasal interface to create a negative pressure area in the gas flow path at the entrainment port. The nasal interface and the nozzle may create a positive pressure area between the entrainment port and the distal end gas flow path opening. Gas from the gas delivery source and air entrained through the entrainment port may increase airway pressure or lung pressure or provide ventilatory support.
摘要:
A portable mechanical ventilator having a Roots blower is configured to provide a desired gas flow and pressure to a patient circuit. The mechanical ventilator includes a flow meter operative to measure gas flow produced by the Roots blower and an exhalation control module configured to operate an exhalation valve connected to the patient circuit. A bias valve connected between the Roots blower and the patient circuit is specifically configured to generate a bias pressure relative to the patient circuit pressure at the exhalation control module. The bias valve is further configured to attenuate pulsating gas flow produced by the Roots blower such that gas flowing to the mass flow meter exhibits a substantially constant pressure characteristic. The bias pressure facilitates closing of the exhalation valve at the start of inspiration, regulates positive end expiratory pressure during exhalation, and purges sense lines via a pressure transducer module.
摘要:
A non-invasive ventilation system may include an interface. The interface may include at least one gas delivery jet nozzle adapted to be positioned in free space and aligned to directly deliver ventilation gas into an entrance of a nose. The at least one gas delivery jet nozzle may be connected to a pressurized gas supply. The ventilation gas may entrain ambient air to elevate lung pressure, elevate lung volume, decrease the work of breathing or increase airway pressure, and wherein the ventilation gas is delivered in synchrony with phases of breathing. A support for the at least one gas delivery jet nozzle may be provided. A breath sensor may be in close proximity to the entrance of the nose. A patient may spontaneous breathe ambient air through the nose without being impeded by the interface.
摘要:
A non-invasive ventilation system may include a nasal interface. The nasal interface may include a left outer tube with a left distal end adapted to impinge a left nostril, at least one left opening in the left distal end in pneumatic communication with the left nostril, and a left proximal end of the left outer tube in fluid communication with ambient air. The left proximal end of the left outer tube may curve laterally away from a midline of a face. A right outer tube may be similarly provided. One or more left jet nozzles may direct ventilation gas into the left outer tube, and one or more right jet nozzles may direct ventilation gas into the right outer tube. The jet nozzles may be in fluid communication with the pressurized gas supply.
摘要:
Methods, systems and devices are described for providing mechanical ventilation support of a patient using an open airway patient interface. The system includes gas delivery circuit and patient interface configurations to optimize performance and efficiency of the ventilation system. A ventilation system may include a ventilator for supplying ventilation gas. A patient interface may include distal end in communication with a patient airway, a proximal end in communication with ambient air, and an airflow channel between the distal end and the proximal end. A gas delivery circuit may be adapted to attach to the patient interface without occluding the patient interface to allow ambient air to flow from outside the patient interface to the patient airway. The ventilation gas may entrain air from ambient and from the patient airway.
摘要:
In accordance with the present invention, there is provided a mask for achieving positive pressure mechanical ventilation (inclusive of CPAP, ventilator support, critical care ventilation, emergency applications), and a method for a operating a ventilation system including such mask. The mask of the present invention includes a piloted exhalation valve that is used to achieve the target pressures/flows to the patient. The pilot for the valve may be pneumatic and driven from the gas supply tubing from the ventilator. The pilot may also be a preset pressure derived in the mask, a separate pneumatic line from the ventilator, or an electro-mechanical control. Additionally, the valve can be implemented with a diaphragm or with a flapper.
摘要:
In accordance with the present invention, there is provided a mask for achieving positive pressure mechanical ventilation (inclusive of CPAP, ventilator support, critical care ventilation, emergency applications), and a method for a operating a ventilation system including such mask. The mask of the present invention includes a piloted exhalation valve that is used to achieve the target pressures/flows to the patient. The pilot for the valve may be pneumatic and driven from the gas supply tubing from the ventilator. The pilot may also be a preset pressure derived in the mask, a separate pneumatic line from the ventilator, or an electro-mechanical control. The mask of the present invention may further include a heat and moisture exchanger (HME) which is integrated therein.