Abstract:
Disclosed are a polishing slurry used in a polishing process of tungsten and a method of polishing using the same. The slurry includes an abrasive for performing polishing and an oxidation promoting agent for promoting the formation of an oxide. The abrasive includes titanium oxide particles.
Abstract:
Provided are slurry for polishing cobalt and a substrate polishing method. The slurry includes an abrasive configured to perform the polishing, the abrasive comprising zirconium oxide particles, a dispersing agent configured to disperse the abrasive, and a polishing accelerator configured to accelerate the polishing. The polishing accelerator includes an organic acid containing an amine group and a carboxylic group. According to the slurry in accordance with an exemplary embodiment, a polishing rate of the cobalt may increases without using an oxidizing agent, and local corrosion defects on a surface of the cobalt may be suppressed.
Abstract:
Provided is a method of manufacturing an abrasive particle including a mother particle and a plurality of auxiliary particles formed on a surface of the mother particle, and a method of manufacturing a polishing slurry in which the abrasive particle is mixed with a polishing accelerating agent and a pH adjusting agent.
Abstract:
A polishing slurry for tungsten and a substrate polishing method are disclosed. The polishing slurry includes an abrasive for performing polishing and having positive zeta potential, and a potential modulator for promoting the oxidation of the tungsten and for controlling the zeta potential of the abrasive.
Abstract:
Provided are slurry for polishing cobalt and a substrate polishing method. The slurry includes an abrasive configured to perform the polishing, the abrasive comprising zirconium oxide particles, a dispersing agent configured to disperse the abrasive, and a polishing accelerator configured to accelerate the polishing. The polishing accelerator includes an organic acid containing an amine group and a carboxylic group. According to the slurry in accordance with an exemplary embodiment, a polishing rate of the cobalt may increases without using an oxidizing agent, and local corrosion defects on a surface of the cobalt may be suppressed.
Abstract:
Provided are an abrasive particle including auxiliary particles formed on a surface of a mother particle, a polishing slurry prepared by mixing the abrasive particles with a polishing accelerating agent and a pH adjusting agent, and a method of manufacturing a semiconductor device in which an insulating layer is polished by the polishing slurry while using a conductive layer as a polishing stop layer.
Abstract:
A polishing slurry is disclosed which includes about 0.01 wt % to about 10 wt % of polishing particles, about 0.005 wt % to about 0.1 wt % of a dispersing agent, about 0.001 wt % to about 1 wt % of an oxide-polishing promoter including a pyridine compound, about 0.05 wt % to about 0.1 wt % of a nitride-polishing inhibitor including an amino acid or an anionic organic acid, and water. A method for manufacturing a display device including an active pattern disposed on a base substrate, a gate metal pattern including a gate electrode overlapping the active pattern, a planarized insulation layer disposed on the gate metal pattern, and a source metal pattern disposed on the planarized insulation layer is also disclosed.
Abstract:
A polishing slurry for silicon, a method of polishing polysilicon, and a method of manufacturing a thin film transistor substrate, the slurry including a polishing particle; a dispersing agent including an anionic polymer, a hydroxyl acid, or an amino acid; a stabilizing agent including an organic acid, the organic acid including a carboxyl group; a hydrophilic agent including a hydrophilic group and a hydrophobic group, and water, wherein the polishing particle is included in the polishing slurry in an amount of about 0.1% by weight to about 10% by weight, based on a total weight of the slurry, a weight ratio of the polishing particle and the dispersing agent is about 1:0.01 to about 1:0.2, a weight ratio of the polishing particle and the stabilizing agent is about 1:0.001 to about 1:0.1, and a weight ratio of the polishing particle and the hydrophilic agent is about 1:0.01 to about 1:3.
Abstract:
Provided are an abrasive particle including auxiliary particles formed on a surface of a mother particle, a polishing slurry prepared by mixing the abrasive particles with a polishing accelerating agent and a pH adjusting agent, and a method of manufacturing a semiconductor device in which an insulating layer is polished by the polishing slurry while using a conductive layer as a polishing stop layer.
Abstract:
Provided are a slurry for polishing tungsten and a method of polishing a substrate. The slurry according to an exemplary embodiment includes an abrasive configured to perform polishing and include particles having a positive zeta potential, a dispersant configure to disperse the abrasive, an oxidizer configured to oxidize a surface of the tungsten, a catalyst configured to promote oxidation of the tungsten, and a selectivity control agent configured to control a polishing selectivity and include an organic acid containing a carboxyl group. According to the slurry of the exemplary embodiment, a polishing selectivity between the tungsten and the insulation layer may be improved by suppressing a polishing rate of the insulation layer.