Abstract:
Disclosed are hafnium- and zirconium-containing precursors and methods of providing the same. The disclosed precursors include a ligand and at least one aliphatic group as substituent selected to have greater degrees of freedom than the usual substituents. The disclosed precursors may be used to deposit hafnium- or zirconium-containing layers using vapor deposition methods such as chemical vapor deposition or atomic layer deposition.
Abstract:
Disclosed are Si-containing film forming compositions comprising carbosilane substituted amine precursors. The carbosilane substituted amine precursors have the formula (R1)aN(—SiHR2—CH2—SiH2R3)3-a, wherein a=0 or 1; R1 is H, a C1 to C6 alkyl group, or a halogen; R2 and R3 is each independently H; a halogen; an alkoxy group having the formula OR′, wherein R′ is an alkyl group (C1 to C6); or an alkylamino group having the formula NR″2, wherein each R″ is independently H, a C1-C6 alkyl group, a C1-C6 alkenyl group, or a C3-C10 aryl or heterocycle group. Also disclosed are methods of synthesizing the carbosilane substituted amine precursors and their use for deposition processes.
Abstract:
Disclosed are lithium-containing compounds and methods of utilizing the same. The disclosed compounds may be used to deposit alkali metal-containing layers using vapor deposition methods such as chemical vapor deposition or atomic layer deposition. In certain embodiments, the lithium-containing compounds include a ligand and at least one aliphatic group as substituents selected to have greater degrees of freedom than the usual substituent.
Abstract:
Disclosed are titanium-containing precursors and methods of synthesizing the same. The compounds may be used to deposit titanium, titanium oxide, strontium-titanium oxide, and barium strontium titanate containing layers using vapor deposition methods such as chemical vapor deposition or atomic layer deposition.
Abstract:
Disclosed are hafnium-containing and zirconium-containing precursors and methods of synthesizing the same. The compounds may be used to deposit hafnium, zirconium, hafnium oxide, and zirconium oxide containing layers using vapor deposition methods such as chemical vapor deposition or atomic layer deposition.
Abstract:
Methods and compositions for depositing rare earth metal-containing layers are described herein. In general, the disclosed methods deposit the precursor compounds comprising rare earth-containing compounds using deposition methods such as chemical vapor deposition or atomic layer deposition. The disclosed precursor compounds include a cyclopentadienyl ligand having at least one aliphatic group as a substituent and an amidine ligand.
Abstract:
Disclosed are hafnium- or zirconium-containing compounds. The compounds may be used to deposit hafnium- or zirconium-containing layers using vapor deposition methods such as chemical vapor deposition or atomic layer deposition. The hafnium- or zirconium-containing compounds include a ligand at least one aliphatic group as substituents selected to have greater degrees of freedom than the substituents disclosed in the prior art.
Abstract:
Methods and compositions for depositing rare earth metal-containing layers are described herein. In general, the disclosed methods deposit the precursor compounds comprising rare earth-containing compounds using vapor deposition methods such as chemical vapor deposition or atomic layer deposition. In certain embodiments, the disclosed precursor compounds include a cyclopentadienyl ligand having at least one aliphatic group as a substituent.
Abstract:
Disclosed are hexacoordinate silicon-containing precursors, methods of synthesizing the same, and methods of using the same to deposit silicon-containing films using vapor deposition processes for manufacturing semiconductors, photovoltaics, LCD-TFT, flat panel type devices, refractory materials, or aeronautics. The hexacoordinate silicon-containing molecule have the following formula: (I), wherein each L1, L2, L3 and L4 is independently selected from oxygen or nitrogen atoms; L1 and L2 are joined together via a carbon bridge having one to three carbon atoms; L3 and L4 are joined together via a carbon bridge having one to three carbon atoms; L1, L2 and the carbon bridge forming a monoanionic ligand bonded to silicon; and L3, L4 and the carbon bridge form a monoanionic ligand bonded to silicon.