Abstract:
Methods and apparatus to facilitate the measurement of the amount of scattered electrons collected by an anti-fogging baffle arrangement are provided. For some embodiments, by affixing a lead to an electrically isolated (floating) portion of the baffle arrangement, the amount of scattered electrons collected thereby may be read out, for example, as a current signal. Thus, for such embodiments, the baffle arrangement may double as a detector, allowing an image of surface (e.g., a mask or substrate surface) to be generated.
Abstract:
An electron beam source for use in an electron gun. The electron beam source includes an emitter terminating in a tip. The emitter is configured to generate an electron beam. The electron beam source further includes a suppressor electrode laterally surrounding the emitter such that the tip of the emitter protrudes through the suppressor electrode and an extractor electrode disposed adjacent the tip of the emitter. The extractor electrode comprises a magnetic disk whose magnetic field is aligned with an axis of the electron beam.
Abstract:
An apparatus and method for deflecting electron beams with high precision and high throughput. At least one electrode of a deflecting capacitor is connected to a signal source via a coaxial cable. A termination resistor is further connected to the coaxial cable and the electrode at the joint of the coaxial cable and the electrode. The termination resistor has a resistance matched to the impedance of the coaxial cable and the electrode has an impedance matched to half of the impedance of the coaxial. The deflecting capacitors of the present invention have a minimized loss of precision due to eddy current. The spacing of electrodes in the deflecting capacitors is reduced by a factor of approximately two compared to the state-the-art system.
Abstract:
A hybrid exposure strategy for pattern generation uses wide field raster scan deflection and a uniformly moving stage to expose long stripes. Periodic analog wide field magnetic scan is augmented by a high speed electrostatic retrograde scan to keep the beam essentially stationary during exposure of rectangular flash fields and/or Gaussian beams. In this manner a staircase deflection trajectory is created for the beam. The position and dose data for each flash is derived from a rasterized data format using a decoder device.
Abstract:
Embodiments of the present invention may be utilized to improve electron beam deflection. One embodiment provides an electrostatic deflection system with electrodes that minimize aberrations and to achieve vertical incidence simultaneously. By using at least two stages of deflection for a deflection direction, the present invention allows the deflected electron beam to pass a back focal plane of an objective lens while deflection capacitors are not disposed across the back focal plane. As a result, deflection electrodes can have an angle of 120° to minimize aberrations and simultaneously achieve vertical incidence of the electron beam on a target to avoid distortions or changes in magnification with height variations of the target or focus variations.
Abstract:
A hybrid exposure strategy for pattern generation uses wide field raster scan deflection and a uniformly moving stage to expose long stripes. Periodic analog wide field magnetic scan is augmented by a high speed electrostatic retrograde scan to keep the beam stationary during exposure of rectangular flash fields. The system's data path utilizes a pattern represented in a rasterized format. Intermediate vector data bases are created using fracture rules that limit feature and hierarchical cell size of to be smaller than overlapping fringes of stripe data fields. Rectangular flash fields are employed with each field being a 1 by n array of writing pixels. The length, origin position and dose of line shaped beam flashes can be varied to allow patterns to be exposed on a design grid much smaller than a writing pixel. The length, origin position and dose data for each flash is derived from a rasterized data format using a decoder device. In this manner multiple writing pixels are exposed simultaneously without compromising resolution or diagonal line edge roughness, thus enhancing exposure rate. A high flash rate is assured by including astigmatic illumination to maximize beam current, and leveraged co-planar blanking and shaping deflection to minimize drive voltages.
Abstract:
Fabrication of 0.25 gm design rule or smaller devices on chips, that may attain levels of 256 megabit or higher depends upon lithographic patterning by use of accelerated charged particle beams. Fabrication is expedited by acceleration values resulting in deBroglie wavelengths at least in order of magnitude smaller than such design rule to permit cost saving both in fabricating apparatus and resulting devices. Most importantly, such wavelength values permit significant variation in spatial angle of incidence of beam to wafer to permit both large instantaneous exposure areas and in temporal angle of incidence to expedite beam scanning as emitted from a fixed particle source.
Abstract:
Each data record portion on a record member includes preamble signals for synchronizing recording apparatus with respect to data signals recorded in juxtaposition to the preamble signals. A plurality of beginning of data indicators are interleaved in the synchronizing signals for providing a plurality of independent but coacting beginning of data location pointers. Enhanced apparatus includes means responsive to any one of the location pointers to ensure a reliable start of data indication.
Abstract:
This digital circuit generates a window during which the data bit transitions of phase encoded data may be read from magnetic tape. This circuit contemplates a system for reading nine track tape and comprises one phase lock loop and window generator for each track, and the logic and control circuitry necessary to deskew and output the data in the form of nine bit bytes. Each phase lock loop is individually free to correct itself to conform to the variations of its own track, and the control circuit can compensate for a total skew of up to four bit times.
Abstract:
An electron beam column comprises a thermal field emission electron source to generate an electron beam, an electron beam blanker, a beam shaping module, and electron beam optics comprising a plurality of electron beam lenses. In one version, the optical parameters of the electron beam blanker, beam shaping module, and electron beam optics are set to achieve an acceptance semi-angle β of from about ¼ to about 3 mrads, where the acceptance semi-angle β is the half the angle subtended by the electron beam at the writing plane. The beam-shaping module can also operate as a single lens using upper and lower projection lenses. A multifunction module for an electron beam column is also described.