Abstract:
Provided is a method of estimating a load carrying capacity of a bridge. The load carrying capacity estimation method includes the steps of: estimating a mode coefficient of the bridge using an acceleration signal obtained from an accelerometer that is installed in the bridge; updating an analysis model of the bridge using the estimated mode coefficient; and estimating a rating factor of the bridge by applying a dead load and a design live load to the updated analysis model.
Abstract:
A method of fabricating a polycrystalline silicon thin that includes a metal layer forming operation of forming a metal layer on an insulating substrate, a first silicon layer forming operation of stacking a silicon layer on the metal layer formed in the metal layer forming operation, a first annealing operation of forming a silicide layer using by moving catalyst metal atoms from the metal layer to the silicon layer using an annealing process, a second silicon layer forming operation of stacking an amorphous silicon layer on the silicide layer, and a crystallization operation of crystallizing the amorphous silicon layer into crystalline silicon through the medium of particles of the silicide layer.
Abstract:
A plasma accelerating apparatus and a plasma processing system, which efficiently elevate a drift velocity of a plasma beam and are simple to manufacture and simple in construction. A channel includes an outlet port opening at an end of the channel. A gas supply portion supplies a gas in the channel. A plasma generator provides ionization energy to the gas in the channel to generate a plasma beam. A plasma accelerating portion includes a plurality of grids transversely arranged spaced apart from each other by a predetermined distance in the channel for accelerating the plasma beam generated by the plasma generator to the outlet port of the channel with an electric field. The plasma accelerating apparatus and the plasma processing system elevate a drift velocity of the plasma beam more efficiently than conventional accelerating apparatuses that use an electromagnetic force induced by a magnetic field and a secondary current.
Abstract:
In a semiconductor memory device and a method of fabricating the same, a semiconductor memory device having a transistor and a data storing portion includes a heating portion interposed between the transistor and the data storing portion and a metal interconnection layer connected to the data storing portion, wherein the data storing portion includes a chalcogenide material layer, which undergoes a phase change due to a heating of the heating portion, for storing data therein.
Abstract:
A plasma accelerating apparatus and a plasma processing system, which efficiently elevate a drift velocity of a plasma beam and are simple to manufacture and simple in construction. A channel includes an outlet port opening at an end of the channel. A gas supply portion supplies a gas in the channel. A plasma generator provides ionization energy to the gas in the channel to generate a plasma beam. A plasma accelerating portion includes a plurality of grids transversely arranged spaced apart from each other by a predetermined distance in the channel for accelerating the plasma beam generated by the plasma generator to the outlet port of the channel with an electric field. The plasma accelerating apparatus and the plasma processing system elevate a drift velocity of the plasma beam more efficiently than conventional accelerating apparatuses that use an electromagnetic force induced by a magnetic field and a secondary current.
Abstract:
A plasma display panel using excimer gas is provided. Mixed excimer gases containing xenon (Xe) used to form excimer gas and iodine (I) as a halogen, are injected into the plasma display panel to be used as discharge gases. At least one selected from helium (He), neon (Ne), argon (Ar) and krypton (Kr) can be used as a buffering gas for the discharging gases. At least some of ultraviolet rays originate from the excimer gases and at least some of iodine is supplied from I2. The partial pressure of molecular iodine is less than or equal to a saturated vapor pressure, at operating temperature of the plasma display panel, at room temperature and at 0° C., respectively. The partial pressure of iodine inside the plasma display panel is in the range of 0.01 to 50% based on the total pressure of excimer gases.
Abstract:
Provided is a method of estimating a load carrying capacity of a bridge. The load carrying capacity estimation method includes the steps of: estimating a mode coefficient of the bridge using an acceleration signal obtained from an accelerometer that is installed in the bridge; updating an analysis model of the bridge using the estimated mode coefficient; and estimating a rating factor of the bridge by applying a dead load and a design live load to the updated analysis model.
Abstract:
An impulse radio-based ultra wideband communication system, using an ultra wideband impulse and a 1-bit high-speed digital sampler, includes a transmitting RF module, a receiving RF module, a signal recovery unit, a transmitting signal processor, a receiving signal processor, and an ultra wideband antenna. The transmitting RF module includes an integrated impulse generator capable of implementing on-off-keying modulation and pulse position modulation, and an amplifier for amplifying output of the integrated impulse generator. The receiving RF module includes a two stage envelope detector for detecting a received signal and a comparator for converting the detected signal into a rectangular pulse. The signal recovery unit restores the signal from the receiving RF module to a digital signal using the 1-bit digital sampler. The signal processor includes a receiving signal processor for synchronizing the digital signal and decoding the detected signal. The ultra wideband antenna transmits and receives an ultra wideband signal.
Abstract:
A neutral beam etching device for separating and accelerating a plasma is provided. The device includes a first chamber having a first opening formed at one side thereof; a second chamber having a second opening formed at one side thereof and being disposed inside the first chamber to form a plasma generation area; a first channel fluidly communicating the first opening with the plasma generation area; a second channel fluidly communicating the second opening with the plasma generation area; a coil disposed on an outer surface of the first chamber and which generates a magnetic field to generate a plasma in the plasma generation area; and an acceleration part disposed within the first and second chambers and configured to separate the plasma into a positive ion and an electron, accelerate the positive ion and the electron, and discharge the positive ion and electron through the first and the second channels.
Abstract:
Disclosed herein is a power line channel-adaptive communications system and method. The power line channel-adaptive communications system includes a transmitting end, a channel-adaptive controller, and a receiving end. The transmitting end generates an adaptive chirp symbol signal of a preset type for transmission data according to a channel state of the power line, modulates the generated adaptive chirp symbol signal in any one of first and second transmission modes, and transmits the modulated adaptive chirp symbol signal via the power line channel. The channel-adaptive controller controls the type and transmission mode of the adaptive chirp symbol signal. The receiving end restores the transmission data by demodulating the adaptive chirp symbol signal, received via the power line channel, in any one of the first and second transmission modes according to the channel state of the power line.