Abstract:
In one embodiment, a first vacuum chamber of an electron beam column has an opening which is positioned along an optical axis so as to pass a primary electron beam that travels down the column. A source that emits electrons is positioned within the first vacuum chamber. A beam-limiting aperture is configured to pass a limited angular range of the emitted electrons. A magnetic immersion lens is positioned outside of the first vacuum chamber and is configured to immerse the electron source in a magnetic field so as to focus the emitted electrons into the primary electron beam. An objective lens is configured to focus the primary electron beam onto a beam spot on a substrate surface so as to produce scattered electrons from the beam spot. Controllable deflectors are configured to scan the beam spot over an area of the substrate surface. Other features and embodiments are also disclosed.
Abstract:
In one embodiment, a first vacuum chamber of an electron beam column has an opening which is positioned along an optical axis so as to pass a primary electron beam that travels down the column. A source that emits electrons is positioned within the first vacuum chamber. A beam-limiting aperture is configured to pass a limited angular range of the emitted electrons. A magnetic immersion lens is positioned outside of the first vacuum chamber and is configured to immerse the electron source in a magnetic field so as to focus the emitted electrons into the primary electron beam. An objective lens is configured to focus the primary electron beam onto a beam spot on a substrate surface so as to produce scattered electrons from the beam spot. Controllable deflectors are configured to scan the beam spot over an area of the substrate surface. Other features and embodiments are also disclosed.
Abstract:
One embodiment relates to an electron beam apparatus which includes a dual-lens electron gun for emitting an electron beam. The electron beam is a high beam-current electron beam in a first operating mode and a low beam-current electron beam in a second operating mode. The apparatus further includes a column aperture which is out of the path of the high beam-current electron beam in the first operating mode and is centered about an optical axis of the electron beam apparatus in the second operating mode. Another embodiment relates to an electron gun which includes a first gun lens, a beam limiting aperture, and a second gun lens. The first gun lens focuses the electrons before they pass through the beam-limiting aperture while the second gun lens focuses the electrons after they pass through the beam-limiting aperture. Other embodiments, aspects and features are also disclosed.
Abstract:
The present disclosure provides an electron beam column with substantially improved resolution and/or throughput for inspecting manufactured substrates. The electron beam column comprises an electron gun, a scanner, an objective lens, and a detector. In accordance with one embodiment, the electron gun includes a gun lens having a flip-up pole piece configuration. In accordance with another embodiment, the scanner comprises a dual scanner having a pre-scanner and a main scanner, and the detector may be configured between the electron gun and the pre-scanner. In accordance with another embodiment, the electron beam column includes a continuously-variable aperture configured to select a beam current. Other embodiments relate to methods of using an electron beam column for automated inspection of manufactured substrates. In one embodiment, for example, an aperture size is adjusted to achieve a minimum spot size given a selected beam current and a column-condition domain being used.
Abstract:
One embodiment disclosed relates to a multiple-beamlet electron beam imaging apparatus for imaging a surface of a target substrate. A beam splitter lens array is configured to split the illumination beam to form a primary beamlet array, and a scanning system is configured to scan the primary beamlet array over an area of the surface of the target substrate. In addition, a detection system configured to detect individual secondary electron beamlets. Another embodiment disclosed relates to a method of imaging a surface of a target substrate using a multiple-beamlet electron beam column. Other features and embodiments are also disclosed.
Abstract:
An electron gun of the type having an electron emitter for emitting electrons, including an electrostatic lens and a magnetic lens formed by pole pieces with a winding coil disposed between the magnetic pole pieces. The magnetic lens forms a rotationally symmetrical magnetic field in a gap formed by the pole pieces. The magnetic field forms the magnetic lens and focuses the electrons emitted from the emitter. A vacuum tube separates the electron gun from the magnetic lens. The electron gun is sealed in a vacuum by the vacuum tube and the magnetic lens is shielded in air.
Abstract:
One embodiment disclosed relates to a multiple-beamlet electron beam imaging apparatus for imaging a surface of a target substrate. A beam splitter lens array is configured to split the illumination beam to form a primary beamlet array, and a scanning system is configured to scan the primary beamlet array over an area of the surface of the target substrate. In addition, a detection system configured to detect individual secondary electron beamlets. Another embodiment disclosed relates to a method of imaging a surface of a target substrate using a multiple-beamlet electron beam column. Other features and embodiments are also disclosed.
Abstract:
One embodiment relates to an electron-beam apparatus for defect inspection and/or review of substrates or for measuring critical dimensions of features on substrates. The apparatus includes an electron gun and an electron column. The electron gun includes an electron source configured to generate electrons for an electron beam and an adjustable beam-limiting aperture which is configured to select and use one aperture size from a range of aperture sizes. Another embodiment relates to providing an electron beam in an apparatus. Advantageously, the disclosed apparatus and methods reduce spot blur while maintaining a high beam current so as to obtain both high sensitivity and high throughput.
Abstract:
A multi-charged particle beam tool for semiconductor wafer inspection or lithography includes an array of electron beam columns, each having its own electron or ion source. The objective lenses of the various electron beam columns, while each has its own pole piece, share a common single magnetic coil which generates a uniform magnetic field surrounding the entire array of electron beam columns. This advantageously improves the spacing between the beams while providing the superior optical properties of a strong magnetic objective lens. When used as an inspection tool, each column also has its own associated detector to detect secondary and back-scattered electrons from the wafer under inspection. In one version the gun lenses similarly have individual pole pieces for each column and share a common magnetic coil.
Abstract:
One embodiment relates to an apparatus for high-resolution electron beam imaging. The apparatus includes an energy filter configured to limit an energy spread of the electrons in the incident electron beam. The energy filter may be formed using a stigmatic Wien filter and a filter aperture. Another embodiment relates to a method of forming an incident electron beam for a high-resolution electron beam apparatus. Another embodiment relates to a stigmatic Wien filter that includes curved conductive electrodes. Another embodiment relates to a stigmatic Wien filter that includes a pair of magnetic yokes and a multipole deflector. Other embodiments, aspects and features are also disclosed.