SWITCHING OF PARALLELED REVERSE CONDUCTING IGBT AND WIDE BANDGAP SWITCH

    公开(公告)号:US20190273493A1

    公开(公告)日:2019-09-05

    申请号:US16411716

    申请日:2019-05-14

    Applicant: ABB Schweiz AG

    Abstract: A semiconductor module comprises reverse conducting IGBT connected in parallel with a wide bandgap MOSFET, wherein each of the reverse conducting IGBT and the wide bandgap MOSFET comprises an internal anti-parallel diode. A method for operating a semiconductor module with the method including the steps of: determining a reverse conduction start time, in which the semiconductor module starts to conduct a current in a reverse direction, which reverse direction is a conducting direction of the internal anti-parallel diodes; applying a positive gate signal to the wide bandgap MOSFET after the reverse conduction start time; determining a reverse conduction end time based on the reverse conduction start time, in which the semiconductor module ends to conduct a current in the reverse direction; and applying a reduced gate signal to the wide bandgap MOSFET a blanking time interval before the reverse conduction end time, the reduced gate signal being adapted for switching the wide bandgap MOSFET

    Power semiconductor device with floating field ring termination

    公开(公告)号:US10566463B2

    公开(公告)日:2020-02-18

    申请号:US16420803

    申请日:2019-05-23

    Applicant: ABB Schweiz AG

    Abstract: In a power semiconductor device of the application a total number n of floating field rings (10_1 to 10_n) formed in a termination area is at least 10. For any integer i in a range from i=2 to i=n, a ring-to-ring separation di,i−i between an i-th floating field ring and a directly adjacent (i−1)-th floating field ring, when counting the floating field rings (10_1 to 10_n) along a straight line starting from a main pn-junction and extending in a lateral direction away from the main pn-junction, is given by the following formula: di,i−1=d1,0+Σj=1j=i−1 Δj for i=2 to n, wherein d1,0 is a distance between the innermost floating field ring (10_1) closest to the main pn-junction and the main pn-junction, and wherein: Δzone1−0.05·Δzone2 0.1 μm, and −Δzone2/2

    Flat gate commutated thyristor
    5.
    发明授权

    公开(公告)号:US10461157B2

    公开(公告)日:2019-10-29

    申请号:US15918581

    申请日:2018-03-12

    Applicant: ABB Schweiz AG

    Abstract: The invention relates to a turn-off power semiconductor device comprising a plurality of thyristor cells, each thyristor cell comprising a cathode region; a base layer; a drift layer; an anode layer; a gate electrode which is arranged lateral to the cathode region in contact with the base layer; a cathode electrode; and an anode electrode. Interfaces between the cathode regions and the cathode electrodes as well as interfaces between the base layers and the gate electrodes of the plurality of thyristor cells are flat and coplanar. In addition, the base layer includes a gate well region extending from its contact with the gate electrode to a depth, which is at least half of the depth of the cathode region, wherein, for any depth, the minimum doping concentration of the gate well region at this depth is 50% above a doping concentration of the base layer between the cathode region and the gate well region at this depth and at a lateral position, which has in an orthogonal projection onto a plane parallel to the first main side a distance of 2 μm from the cathode region. The base layer includes a compensated region of the second conductivity type, the compensated region being arranged directly adjacent to the first main side and between the cathode region and the gate well region, wherein the density of first conductivity type impurities relative to the net doping concentration in the compensated region is at least 0.4.

    AREA EFFICIENT FLOATING FIELD RING TERMINATION

    公开(公告)号:US20190035884A1

    公开(公告)日:2019-01-31

    申请号:US15991240

    申请日:2018-05-29

    Applicant: ABB Schweiz AG

    Abstract: A high power semiconductor device with a floating field ring termination includes a wafer, wherein a plurality of floating field rings is formed in an edge termination region adjacent to a first main side surface of the wafer. At least in the termination region a drift layer, in which the floating field rings are formed, includes a surface layer and a bulk layer wherein the surface layer is formed adjacent to the first main side surface to separate the bulk layer from the first main side surface and has an average doping concentration which is less than 50% of the minimum doping concentration of the bulk layer. The drift layer includes a plurality of enhanced doping regions, wherein each one of the enhanced doping regions is in direct contact with a corresponding one of the floating field rings at least on a lateral side of this floating field ring, which faces towards the active region. The relatively low doped surface layer and the enhanced doping regions increase the electric field coupling from floating field ring to floating field ring, thus allowing an area efficient termination structure. Each enhanced doping region extends to at least the same depth as the one of the corresponding floating field ring.

    FLAT GATE COMMUTATED THYRISTOR
    7.
    发明申请

    公开(公告)号:US20180204913A1

    公开(公告)日:2018-07-19

    申请号:US15918581

    申请日:2018-03-12

    Applicant: ABB Schweiz AG

    Abstract: The invention relates to a turn-off power semiconductor device comprising a plurality of thyristor cells, each thyristor cell comprising a cathode region; a base layer; a drift layer; an anode layer; a gate electrode which is arranged lateral to the cathode region in contact with the base layer; a cathode electrode; and an anode electrode. Interfaces between the cathode regions and the cathode electrodes as well as interfaces between the base layers and the gate electrodes of the plurality of thyristor cells are flat and coplanar. In addition, the base layer includes a gate well region extending from its contact with the gate electrode to a depth, which is at least half of the depth of the cathode region, wherein, for any depth, the minimum doping concentration of the gate well region at this depth is 50% above a doping concentration of the base layer between the cathode region and the gate well region at this depth and at a lateral position, which has in an orthogonal projection onto a plane parallel to the first main side a distance of 2 μm from the cathode region. The base layer includes a compensated region of the second conductivity type, the compensated region being arranged directly adjacent to the first main side and between the cathode region and the gate well region, wherein the density of first conductivity type impurities relative to the net doping concentration in the compensated region is at least 0.4.

    POWER SEMICONDUCTOR DEVICE WITH FLOATING FIELD RING TERMINATION

    公开(公告)号:US20190288124A1

    公开(公告)日:2019-09-19

    申请号:US16420803

    申请日:2019-05-23

    Applicant: ABB Schweiz AG

    Abstract: In a power semiconductor device of the application a total number n of floating field rings (10_1 to 10_n) formed in a termination area is at least 10. For any integer i in a range from i=2 to i=n, a ring-to-ring separation di,1−i between an i-th floating field ring and a directly adjacent (i−1)-th floating field ring, when counting the floating field rings (10_1 to 10_n) along a straight line starting from a main pn-junction and extending in a lateral direction away from the main pn-junction, is given by the following formula: di,i−1=d1,0+Σj=1j=i−1 Δj for i=2 to n, wherein d1,0 is a distance between the innermost floating field ring (10_1) closest to the main pn-junction and the main pn-junction, and wherein: Δzone1−0.05·Δzone2

    Bidirectional power semiconductor

    公开(公告)号:US10026732B2

    公开(公告)日:2018-07-17

    申请号:US15626777

    申请日:2017-06-19

    Applicant: ABB Schweiz AG

    Abstract: A bidirectional power semiconductor device with full turn-off control in both current directions and improved electrical and thermal properties is provided, the device comprises a plurality of first gate commutated thyristor (GCT) cells and a plurality of second GCT cells alternating with each other, a first base layer of each first GCT cell is separated from a neighbouring second anode layer of a neighbouring second GCT cell by a first separation region, and a second base layer of each second GCT cell is separated from a neighbouring first anode layer of a neighbouring first GCT cell by a second separation region.

Patent Agency Ranking