Abstract:
An apparatus comprising an electrolyte cell, an anode, and a porous rigid diffuser. The electrolyte cell is configured to receive a substrate to have a metal film deposited thereon. An anode is contained within the electrolyte cell. A porous rigid diffuser is connected to the electrolyte cell and extends across the electrolyte cell. The diffuser is positioned between a location that the substrate is to be positioned when the metal film is deposited thereon and the anode.
Abstract:
An electro-chemical plating system is described. A method is performed by the electro-chemical plating system in which a seed layer formed on a substrate is immersed into an electrolyte solution. In one aspect, a substrate is immersed in the electrochemical plating system by tilting the substrate as it enters the electrolyte solution to limit the trapping or formation of air bubbles in the electrolyte solution between the substrate and the substrate holder. In another aspect, an apparatus is provided for electroplating that comprises a cell, a substrate holder, and an actuator. The actuator can displace the substrate holder assembly in the x and z directions and also tilt the substrate. In another aspect, a method is provided of driving a meniscus formed by electrolyte solution across a surface of a substrate. The method comprises enhancing the interaction between the electrolyte solution meniscus and the surface as the substrate is immersed into the electrolyte solution.
Abstract:
Embodiments of the invention provide a spin rinse dry (SRD) chamber for a semiconductor processing system. The SRD chamber includes a selectively rotatable substrate support member having an upper substrate receiving surface formed thereon, and a selectively rotatable shield member positioned above the upper substrate receiving surface, the rotatable shield member having a substantially planar lower surface that may be selectively positioned proximate the upper substrate. Embodiments of the invention further provide a method for rinsing semiconductor substrates, including the steps of positioning the substrate on a substrate support member, positioning a shield member having a substantially planar lower surface in a processing position above the substrate such that the substantially planar lower surface is in parallel orientation with an upper surface of the substrate, and flowing a fluid solution into a processing region defined by the upper surface of the substrate and the substantially planar lower surface via a fluid aperture in the substantially planar lower surface.
Abstract:
A non-contact apparatus and method for removing a metal layer from a substrate are provided. The apparatus includes a rotatable anode substrate support member configured to support a substrate in a face-up position and to electrically contact the substrate positioned thereon. A pivotally mounted cathode fluid dispensing nozzle assembly positioned above the anode substrate support member is also provided. A power supply in electrical communication with the anode substrate support member and the cathode fluid dispensing nozzle is provided, and a system controller configured to regulate at least one of a rate of rotation of the anode substrate support member, a radial position of the cathode fluid dispensing nozzle, and an output power of the power supply is provided. The method provides for the removal of a metal layer from a substrate by rotating the substrate in a face up position on a rotatable substrate support member. A cathode fluid dispensing nozzle is positioned over a central portion of the substrate and a metal removing solution is dispensed from the cathode fluid dispensing nozzle onto the central portion of the substrate. An electrical bias is applied between the substrate and the cathode fluid dispensing nozzle, which operates to deplate the metal layer below the fluid dispensing nozzle.
Abstract:
An apparatus comprising an electrolyte cell, an anode, and a porous rigid diffuser. The electrolyte cell is configured to receive a substrate to have a metal film deposited thereon. An anode is contained within the electrolyte cell. A porous rigid diffuser is connected to the electrolyte cell and extends across the electrolyte cell. The diffuser is positioned between a location that the substrate is to be positioned when the metal film is deposited thereon and the anode.
Abstract:
An apparatus and associated method for deposition of metal ions contained in an electrolyte solution to form a metal film primarily on a seed layer formed on at least a first side of a substrate. The substrate has a second side that is opposed the first side and an edge joining the first side and the second side. The apparatus comprises a substrate holder system and an electric contact element. The electric contact element physically contacts one of the second side or the edge of the substrate. In one aspect, the substrate is rotated about its vertical axis when the seed layer of substrate is immersed in the electrolyte solution during the metal film deposition. In another aspect, the substrate is not rotated about its vertical axis when the seed layer on the substrate is immersed in the electrolyte solution during the metal film deposition. In different embodiments, the electric contact element contacts the seed layer on the second side of the substrate, a diffusion barrier layer on the second side of the substrate, or the seed layer on the edge of the substrate.
Abstract:
An apparatus and a method of depositing a catalytic layer comprising at least one metal selected from the group consisting of noble metals, semi-noble metals, alloys thereof, and combinations thereof in sub-micron features formed on a substrate. Examples of noble metals include palladium and platinum. Examples of semi-noble metals include cobalt, nickel, and tungsten. The catalytic layer may be deposited by electroless deposition, electroplating, or chemical vapor deposition. In one embodiment, the catalytic layer may be deposited in the feature to act as a barrier layer to a subsequently deposited conductive material. In another embodiment, the catalytic layer may be deposited over a barrier layer. In yet another embodiment, the catalytic layer may be deposited over a seed layer deposited over the barrier layer to act as a nullpatchnull of any discontinuities in the seed layer. Once the catalytic layer has been deposited, a conductive material, such as copper, may be deposited over the catalytic layer. In one embodiment, the conductive material is deposited over the catalytic layer by electroless deposition. In another embodiment, the conductive material is deposited over the catalytic layer by electroless deposition followed by electroplating or followed by chemical vapor deposition. In still another embodiment, the conductive material is deposited over the catalytic layer by electroplating or by chemical vapor deposition.
Abstract:
A system is provided in which a smaller flow of deposition solution is diverted from a larger flow of deposition solution flowing on an electrochemical deposition tool platform. The smaller flow is diverted to a dosing unit which may be on a separate platform. The dosing unit in one embodiment comprises a pressurized flow line.
Abstract:
The present invention relates to a device that supplies electricity to a substrate. In one embodiment, the device includes multiple contacts, a current sensor, and a current regulator. The current sensor is attached to each of the plurality of contacts to sense their electric current. A current regulator controls current applied to each of the multiple contacts in response to the current sensor. In another embodiment, a compliant ridge is formed about the periphery of each contact to seal the contact from undesired chemicals.