THREE-DIMENSIONAL DYNAMIC RANDOM ACCESS MEMORY (DRAM) AND METHODS OF FORMING THE SAME

    公开(公告)号:US20230096309A1

    公开(公告)日:2023-03-30

    申请号:US17486631

    申请日:2021-09-27

    Abstract: Examples herein relate to three-dimensional (3D) dynamic random access memory (DRAM) and corresponding methods. In an example, a film stack is formed on a substrate. The film stack includes multiple unit stacks, each having, sequentially, a first dielectric layer, a semiconductor layer, and a second dielectric layer. A first opening is formed through the film stack. The second dielectric layer is pulled back from the first opening forming a first lateral recess. A gate structure is formed in the first lateral recess and disposed on a portion of the semiconductor layer. A second opening, laterally disposed from where the first opening was formed, is formed through the film stack. The portion of the semiconductor layer is pulled back from the second opening forming a second lateral recess. A capacitor is formed in a region where the second lateral recess was disposed and contacting the portion of the semiconductor layer.

    TITANIUM OXIDE ETCH
    3.
    发明申请
    TITANIUM OXIDE ETCH 有权
    氧化钛蚀刻

    公开(公告)号:US20150206764A1

    公开(公告)日:2015-07-23

    申请号:US14157724

    申请日:2014-01-17

    CPC classification number: H01L21/31122 H01J37/32357 H01L21/0337

    Abstract: Methods of selectively etching titanium oxide relative to silicon oxide, silicon nitride and/or other dielectrics are described. The methods include a remote plasma etch using plasma effluents formed from a fluorine-containing precursor and/or a chlorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium oxide. The plasmas effluents react with exposed surfaces and selectively remove titanium oxide while very slowly removing other exposed materials. A direction sputtering pretreatment is performed prior to the remote plasma etch and enables an increased selectivity as well as a directional selectivity. In some embodiments, the titanium oxide etch selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region.

    Abstract translation: 描述了相对于氧化硅,氮化硅和/或其它电介质来选择性地蚀刻氧化钛的方法。 所述方法包括使用由含氟前体和/或含氯前体形成的等离子体流出物的远程等离子体蚀刻。 来自远程等离子体的等离子体流出物流入基板处理区域,其中等离子体流出物与氧化钛反应。 等离子体流出物与暴露的表面反应并选择性地去除氧化钛,同时非常缓慢地除去其它暴露的材料。 在远程等离子体蚀刻之前执行方向溅射预处理,并且能够提高选择性以及方向选择性。 在一些实施方案中,钛氧化物蚀刻选择性部分地来自位于远程等离子体和基板处理区域之间的离子抑制元件的存在。

    FLUORINE REDUCTION WITH SCOPE WITH CONTROLLED OXIDATION

    公开(公告)号:US20170291199A1

    公开(公告)日:2017-10-12

    申请号:US15485105

    申请日:2017-04-11

    CPC classification number: H01L21/02057 H01L21/76224

    Abstract: A method for removing halogen from a surface of a substrate is described herein. The method described herein includes flowing oxygen gas and an inert gas such as nitrogen gas into a RPS. The gases in the RPS are energized to form oxygen radicals and nitrogen radicals. The oxygen and nitrogen radicals are used to remove halogen content on the surface of the substrate. The chamber pressure of the halogen content removal process is very low, ranging from about 50 mTorr to about 100 mTorr. By using oxygen gas and an inert gas and with a low chamber pressure, the halogen content on the surface of the substrate is reduced while keeping the oxidation level of the surface of the substrate to at most 10 Angstroms.

Patent Agency Ranking