Abstract:
The present invention provides a number of innovations in the area of computational process control (CPC). CPC offers unique diagnostic capability during chip manufacturing cycle by analyzing temporal drift of a lithography apparatus/ process, and provides a solution towards achieving performance stability of the lithography apparatus/process. Embodiments of the present invention enable optimized process windows and higher yields by keeping performance of a lithography apparatus and/or parameters of a lithography process substantially close to a pre-defined baseline condition. This is done by comparing the measured temporal drift to a baseline performance using a lithography process simulation model. Once in manufacturing, CPC optimizes a scanner for specific patterns or reticles by leveraging wafer metrology techniques and feedback loop, and monitors and controls, among other things, overlay and/or CD uniformity (CDU) performance over time to continuously maintain the system close to the baseline condition.
Abstract:
Systems and methods for process simulation are described. The methods may use a reference model identifying sensitivity of a reference scanner to a set of tunable parameters. Chip fabrication from a chip design may be simulated using the reference model, wherein the chip design is expressed as one or more masks. An iterative retuning and simulation process may be used to optimize critical dimension in the simulated chip and to obtain convergence of the simulated chip with an expected chip. Additionally, a designer may be provided with a set of results from which an updated chip design is created.
Abstract:
The present invention relates generally to methods and apparatuses for test pattern selection for computational lithography model calibration. According to some aspects, the pattern selection algorithms of the present invention can be applied to any existing pool of candidate test patterns. According to some aspects, the present invention automatically selects those test patterns that are most effective in determining the optimal model parameter values from an existing pool of candidate test patterns, as opposed to designing optimal patterns. According to additional aspects, the selected set of test patterns according to the invention is able to excite all the known physics and chemistry in the model formulation, making sure that the wafer data for the test patterns can drive the model calibration to the optimal parameter values that realize the upper bound of prediction accuracy imposed by the model formulation.
Abstract:
A three-dimensional mask model that provides a more realistic approximation of the three-dimensional effects of a photolithography mask with sub-wavelength features than a thin-mask model. In one embodiment, the three-dimensional mask model includes a set of filtering kernels in the spatial domain that are configured to be convolved with thin-mask transmission functions to produce a near-field image. In another embodiment, the three-dimensional mask model includes a set of correction factors in the frequency domain that are configured to be multiplied by the Fourier transform of thin-mask transmission functions to produce a near-field image.
Abstract:
A method of efficient optical and resist parameters calibration based on simulating imaging performance of a lithographic process utilized to image a target design having a plurality of features. The method includes the steps of determining a function for generating a simulated image, where the function accounts for process variations associated with the lithographic process; and generating the simulated image utilizing the function, where the simulated image represents the imaging result of the target design for the lithographic process. Systems and methods for calibration of lithographic processes whereby a polynomial fit is calculated for a nominal configuration of the optical system and which can be used to estimate critical dimensions for other configurations.
Abstract:
The present disclosure relates to lithographic apparatuses and processes, and more particularly to tools for optimizing illumination sources and masks for use in lithographic apparatuses and processes. According to certain aspects, the present disclosure significantly speeds up the convergence of the optimization by allowing direct computation of gradient of the cost function. According to other aspects, the present disclosure allows for simultaneous optimization of both source and mask, thereby significantly speeding the overall convergence. According to still further aspects, the present disclosure allows for free-form optimization, without the constraints required by conventional optimization techniques.
Abstract:
A model-based tuning method for tuning a first lithography system utilizing a reference lithography system, each of which has tunable parameters for controlling imaging performance. The method includes the steps of defining a test pattern and an imaging model; imaging the test pattern utilizing the reference lithography system and measuring the imaging results; imaging the test pattern utilizing the first lithography system and measuring the imaging results; calibrating the imaging model utilizing the imaging results corresponding to the reference lithography system, where the calibrated imaging model has a first set of parameter values; tuning the calibrated imaging model utilizing the imaging results corresponding to the first lithography system, where the tuned calibrated model has a second set of parameter values; and adjusting the parameters of the first lithography system based on a difference between the first set of parameter values and the second set of parameter values.
Abstract:
Methods according to the present invention provide computationally efficient techniques for designing gauge patterns for calibrating a model for use in a simulation process. More specifically, the present invention relates to methods of designing gauge patterns that achieve complete coverage of parameter variations with minimum number of gauges and corresponding measurements in the calibration of a lithographic process utilized to image a target design having a plurality of features. According to some aspects, a method according to the invention includes transforming the space of model parametric space (based on CD sensitivity or Delta TCCs), then iteratively identifying the direction that is most orthogonal to existing gauges' CD sensitivities in this new space, and determining most sensitive line width/pitch combination with optimal assist feature placement which leads to most sensitive CD changes along that direction in model parametric space.
Abstract:
Systems and methods for tuning photolithographic processes are described. A model of a target scanner is maintained defining sensitivity of the target scanner with reference to a set of tunable parameters. A differential model represents deviations of the target scanner from the reference. The target scanner may be tuned based on the settings of the reference scanner and the differential model. Performance of a family of related scanners may be characterized relative to the performance of a reference scanner. Differential models may include information such as parametric offsets and other differences that may be used to simulate the difference in imaging behavior.
Abstract:
One embodiment of a method for process window optimized optical proximity correction includes applying optical proximity corrections to a design layout, simulating a lithography process using the post-OPC layout and models of the lithography process at a plurality of process conditions to produce a plurality of simulated resist images. A weighted average error in the critical dimension or other contour metric for each edge segment of each feature in the design layout is determined, wherein the weighted average error is an offset between the contour metric at each process condition and the contour metric at nominal condition averaged over the plurality of process conditions. A retarget value for the contour metric for each edge segment is determined using the weighted average error and applied to the design layout prior to applying further optical proximity corrections.