摘要:
A collision detection system for a vehicle includes a sensor and a camera. The sensor measures a first data set of an object relative to the vehicle. The camera measures a second data set of the object relative to the vehicle and separately measures an image-based time-to-collision with the object based on scalable differences of captured images. A fusion module matches data from the sensor and the camera and estimates a collision threat based on the matched data. A plausibility module generates a signal if the measured image-based time-to-collision is less than a calculated steering-based time-to-collision and a braking-based time-to-collision with the object. A countermeasure module actuates a countermeasure device, such as an autonomous braking system, if the collision threat exceeds an actuation threshold and the signal from the plausibility module is received, thereby statistically reducing the rate of false actuations of the countermeasure device.
摘要:
A vehicle may include a sensor configured to detect a rearward approaching object and at least one controller configured to cause the vehicle to accelerate in response to the sensor detecting a rearward approaching object while the vehicle is moving forward.
摘要:
A collision detection system for a vehicle includes a sensor and a camera. The sensor measures a first data set of an object relative to the vehicle. The camera measures a second data set of the object relative to the vehicle and separately measures an image-based time-to-collision with the object based on scalable differences of captured images. A fusion module matches data from the sensor and the camera and estimates a collision threat based on the matched data. A plausibility module generates a signal if the measured image-based time-to-collision is less than a calculated steering-based time-to-collision and a braking-based time-to-collision with the object. A countermeasure module actuates a countermeasure device, such as an autonomous braking system, if the collision threat exceeds an actuation threshold and the signal from the plausibility module is received, thereby statistically reducing the rate of false actuations of the countermeasure device.
摘要:
An Advance Driver Assistance System of a vehicle collects measurements for a driving event, including GPS coordinates for a specific location from the EH system, and logs the data into an on-vehicle database. The ADAS uses the data in the on-vehicle database to develop a history associated with the specific location. Information, including GPS coordinates and recorded false output warnings, may be shared between the on-vehicle database and an off-vehicle database, such as associated with and Electronic Horizon system, providing an opportunity to significantly improve the feature performance of the ADAS. Driver assist information may be compiled between the off-vehicle database and the on-vehicle database, thereby continuously updating the knowledge base of the ADAS and optimizing feature performance of the ADAS over the life of the vehicle
摘要:
A roll stability control system for an automotive vehicle includes an external environment sensing system, such as a camera-based vision system, or a radar, lidar or sonar-based sensing system that generates image, radar, lidar, and/or sonar-based signals. A controller is coupled to the sensing system and generates dynamic vehicle characteristic signals in response to the image, radar, lidar, or sonar-based signals. The controller controls the rollover control system in response to the dynamic vehicle control signal. The dynamic vehicle characteristics may include roll related angles, angular rates, and various vehicle velocities.
摘要:
A steer-by-wire steering system 10 for steering road wheels 40A and 40B on a vehicle. The steering system 10 includes a steering wheel 12 rotatable by an operator to command steering of the steered road wheels 40A and 40B, and a steering input shaft 16 mechanically linked to the steering wheel 12. A housing structure 14 is disposed proximate the steering input shaft 16. A male member 46 is provided on the housing structure, and a female receptacle 50 is formed in the steering input shaft 16 for matingly receiving the male member 46. The female receptacle 50 comprises a pair of end walls 52 and 54 for limiting rotational travel of the steering wheel 12. The steering system 10 further has an actuator 26 for rotating the wheels 40A and 40B on the vehicle in response to rotation of the steering wheel 12.
摘要:
A motor vehicle includes a vehicle floor, a tilt sensor attached to the vehicle floor and having an output, and a forward looking radar module attached to the vehicle. The radar module includes a radar, an accelerometer; and an output from the accelerometer, and a controller that averages the tilt sensor output and the accelerometer output and determines a difference between the output averages, the controller reporting when the differences changes more than a predetermined amount. A method of calibrating the forward looking radar module, when attached to a vehicle, comprises placing the vehicle on a flat surface to determine the accelerometer pitch.
摘要:
An Advance Driver Assistance System of a vehicle collects measurements for a driving event, including GPS coordinates for a specific location from the EH system, and logs the data into an on-vehicle database. The ADAS uses the data in the on-vehicle database to develop a history associated with the specific location. Information, including GPS coordinates and recorded false output warnings, may be shared between the on-vehicle database and an off-vehicle database, such as associated with and Electronic Horizon system, providing an opportunity to significantly improve the feature performance of the ADAS. Driver assist information may be compiled between the off-vehicle database and the on-vehicle database, thereby continuously updating the knowledge base of the ADAS and optimizing feature performance of the ADAS over the life of the vehicle.
摘要:
In at least one embodiment, an apparatus for providing a space management alert for a host vehicle is provided. The apparatus comprises a controller configured to determine whether a first vehicle positioned ahead of the host vehicle is in a first detection zone and to determine whether a second vehicle positioned on one of a left side and a right side of the host vehicle is in a second detection zone. The controller is further configured to determine that the host vehicle is in a high density traffic condition (HDTC) if the first vehicle is in the first detection zone and the second vehicle is in the second detection zone and to selectively disable a space management alert when the host vehicle is in the HDTC.