摘要:
Current apparatuses and methods for analysis of spectroscopic optical coherence tomography (SOCT) signals suffer from an inherent tradeoff between time (depth) and frequency (wavelength) resolution. In one non-limiting embodiment, multiple or dual window (DW) apparatuses and methods for reconstructing time-frequency distributions (TFDs) that applies two windows that independently determine the optical and temporal resolution is provided. For example, optical resolution may relate to scattering information about a sample, and temporal resolution may be related to absorption or depth related information. The effectiveness of the apparatuses and methods is demonstrated in simulations and in processing of measured OCT signals that contain fields which vary in time and frequency. The DW technique may yield TFDs that maintain high spectral and temporal resolution and are free from the artifacts and limitations commonly observed with other processing methods.
摘要:
Current apparatuses and methods for analysis of spectroscopic optical coherence tomography (SOCT) signals suffer from an inherent tradeoff between time (depth) and frequency (wavelength) resolution. In one non-limiting embodiment, multiple or dual window (DW) apparatuses and methods for reconstructing time-frequency distributions (TFDs) that applies two windows that independently determine the optical and temporal resolution is provided. For example, optical resolution may relate to scattering information about a sample, and temporal resolution may be related to absorption or depth related information. The effectiveness of the apparatuses and methods is demonstrated in simulations and in processing of measured OCT signals that contain fields which vary in time and frequency. The DW technique may yield TFDs that maintain high spectral and temporal resolution and are free from the artifacts and limitations commonly observed with other processing methods.
摘要:
Fourier domain a/LCI (faLCI) system and method which enables in vivo data acquisition at rapid rates using a single scan. Angle-resolved and depth-resolved spectra information is obtained with one scan. The reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
摘要:
Fourier domain a/LCI (faLCI) system and method which enables in vivo data acquisition at rapid rates using a single scan. Angle-resolved and depth-resolved spectra information is obtained with one scan. The reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
摘要:
Embodiments described herein involve low-coherence interferometry (LCI) techniques which enable acquisition of structural and depth information regarding a sample of interest. In one embodiment, a “swept-source” (SS) light source is used in LCI to obtain structural and depth information about a sample. The swept-source light source can be used to generate a reference signal and a signal directed towards a sample. Light scattered from the sample is returned as a result and mixed with the reference signal to achieve interference and thus provide structural information regarding the sample. Depth information about the sample can be obtained using Fourier domain concepts as well as time domain techniques. Several LCI embodiments employing a swept-source light source are disclosed herein. In another embodiment disclosed herein, an a/LCI system and method is provided that is based on a time domain system and employs a broadband light source. The systems and processes disclosed herein can be used for biomedical applications, including measuring cellular morphology in tissues and in vitro as well as diagnosing intraepithelial neoplasia, and assessing the efficacy of chemopreventive and chemotherapeutic agents.
摘要:
Fourier domain a/LCI (faLCI) system and method which enables in vivo data acquisition at rapid rates using a single scan. Angle-resolved and depth-resolved spectra information is obtained with one scan. The reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
摘要:
The methods of the present invention are directed at an accurate phase-based technique for measuring arbitrarily long optical distances with sub-nanometer precision. A preferred embodiment of the present invention method employs a interferometer, for example, a Michelson interferometer, with a pair of harmonically related light sources, one continuous wave (CW) and a second source having low coherence. By slightly adjusting the center wavelength of the low coherence source between scans of the target sample, the phase relationship between the heterodyne signals of the CW and low coherence light is used to measure the separation between reflecting interfaces with sub-nanometer precision. As the preferred embodiment of this method is completely free of 2π ambiguity, an issue that plagues most phase-based techniques, it can be used to measure arbitrarily long optical distances without loss of precision.
摘要:
Fourier domain a/LCI (faLCI) system and method which enables in vivo data acquisition at rapid rates using a single scan. Angle-resolved and depth-resolved spectra information is obtained with one scan. The reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
摘要:
Disclosed herein are interferometric systems having reflective chambers and related methods. According to an aspect, an interferometric system may include a light source for generating an illumination beam that propagates towards a sample. A sample holder may hold the sample and include a partially reflective cover for allowing a first portion of the illumination beam to pass therethrough to interact with the sample to produce a sample beam that propagates substantially along an optical axis. The cover may be oriented at an angle for reflecting a second portion of the illumination beam to produce a reference beam that propagates at a predetermined angle with respect to the optical axis. An imaging module may redirect the reference beam towards the optical axis at a detection plane. A detector may intercept the sample and reference beams and may generate a holographic representation of the sample based on the beams.
摘要:
An apparatus and method for obtaining depth-resolved spectra for the purpose of determining the size of scatterers by measuring their elastic scattering properties. Depth resolution is achieved by using a white light source in a Michelson interferometer and dispersing a mixed signal and reference fields. The measured spectrum is Fourier transformed to obtain an axial spatial cross-correlation between the signal and reference fields with near 1 μm depth-resolution. The spectral dependence of scattering by the sample is determined by windowing the spectrum to measure the scattering amplitude as a function of wavenumber.