Abstract:
A patterned transparent conductor including a conductive layer coated on a substrate is described. More specifically, the transparent conductor can be patterned by screen-printing an acidic etchant formulation on the conductive layer. A screen-printable etchant formulation is also disclosed.
Abstract:
Disclosed is a method of screen printing an electrically conductive feature on a substrate, the electrically conductive feature including metallic anisotropic nanostructures, and a coating solution therefore.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
Disclosed is a method of screen printing an electrically conductive feature on a substrate, the electrically conductive feature including metallic anisotropic nanostructures, and a coating solution therefore.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
A patterned transparent conductor including a conductive layer coated on a substrate is described. More specifically, the transparent conductor can be patterned by screen-printing an acidic etchant formulation on the conductive layer. A screen-printable etchant formulation is also disclosed.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
A method for forming a transparent conductor including a conductive layer coated on a substrate is described. The method comprises depositing a plurality of metal nanowires on a surface of a substrate, the metal nanowires being dispersed in a liquid; and forming a metal nanowire network layer on the substrate by allowing the liquid to dry.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.