摘要:
Techniques are disclosed for converting a strain-inducing semiconductor buffer layer into an electrical insulator at one or more locations of the buffer layer, thereby allowing an above device layer to have a number of benefits, which in some embodiments include those that arise from being grown on a strain-inducing buffer and having a buried electrical insulator layer. For instance, having a buried electrical insulator layer (initially used as a strain-inducing buffer during fabrication of the above active device layer) between the Fin and substrate of a non-planar integrated transistor circuit may simultaneously enable a low-doped Fin with high mobility, desirable device electrostatics and elimination or otherwise reduction of substrate junction leakage. Also, the presence of such an electrical insulator under the source and drain regions may further significantly reduce junction leakage. In some embodiments, substantially the entire buffer layer is converted to an electrical insulator.
摘要:
Techniques are disclosed for converting a strain-inducing semiconductor buffer layer into an electrical insulator at one or more locations of the buffer layer, thereby allowing an above device layer to have a number of benefits, which in some embodiments include those that arise from being grown on a strain-inducing buffer and having a buried electrical insulator layer. For instance, having a buried electrical insulator layer (initially used as a strain-inducing buffer during fabrication of the above active device layer) between the Fin and substrate of a non-planar integrated transistor circuit may simultaneously enable a low-doped Fin with high mobility, desirable device electrostatics and elimination or otherwise reduction of substrate junction leakage. Also, the presence of such an electrical insulator under the source and drain regions may further significantly reduce junction leakage. In some embodiments, substantially the entire buffer layer is converted to an electrical insulator.
摘要:
Complimentary metal-oxide-semiconductor nanowire structures are described. For example, a semiconductor structure includes a first semiconductor device. The first semiconductor device includes a first nanowire disposed above a substrate. The first nanowire has a mid-point a first distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. A first gate electrode stack completely surrounds the discrete channel region of the first nanowire. The semiconductor structure also includes a second semiconductor device. The second semiconductor device includes a second nanowire disposed above the substrate. The second nanowire has a mid-point a second distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. The first distance is different from the second distance. A second gate electrode stack completely surrounds the discrete channel region of the second nanowire.
摘要:
Complimentary metal-oxide-semiconductor nanowire structures are described. For example, a semiconductor structure includes a first semiconductor device. The first semiconductor device includes a first nanowire disposed above a substrate. The first nanowire has a mid-point a first distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. A first gate electrode stack completely surrounds the discrete channel region of the first nanowire. The semiconductor structure also includes a second semiconductor device. The second semiconductor device includes a second nanowire disposed above the substrate. The second nanowire has a mid-point a second distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. The first distance is different from the second distance. A second gate electrode stack completely surrounds the discrete channel region of the second nanowire.
摘要:
Complimentary metal-oxide-semiconductor nanowire structures are described. For example, a semiconductor structure includes a first semiconductor device. The first semiconductor device includes a first nanowire disposed above a substrate. The first nanowire has a mid-point a first distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. A first gate electrode stack completely surrounds the discrete channel region of the first nanowire. The semiconductor structure also includes a second semiconductor device. The second semiconductor device includes a second nanowire disposed above the substrate. The second nanowire has a mid-point a second distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. The first distance is different from the second distance. A second gate electrode stack completely surrounds the discrete channel region of the second nanowire.
摘要:
Complimentary metal-oxide-semiconductor nanowire structures are described. For example, a semiconductor structure includes a first semiconductor device. The first semiconductor device includes a first nanowire disposed above a substrate. The first nanowire has a mid-point a first distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. A first gate electrode stack completely surrounds the discrete channel region of the first nanowire. The semiconductor structure also includes a second semiconductor device. The second semiconductor device includes a second nanowire disposed above the substrate. The second nanowire has a mid-point a second distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. The first distance is different from the second distance. A second gate electrode stack completely surrounds the discrete channel region of the second nanowire.
摘要:
Common-substrate semiconductor devices having nanowires or semiconductor bodies with differing material orientation or composition and methods to form such common-substrate devices are described. For example, a semiconductor structure includes a first semiconductor device having a first nanowire or semiconductor body disposed above a crystalline substrate. The first nanowire or semiconductor body is composed of a semiconductor material having a first global crystal orientation. The semiconductor structure also includes a second semiconductor device having a second nanowire or semiconductor body disposed above the crystalline substrate. The second nanowire or semiconductor body is composed of a semiconductor material having a second global crystal orientation different from the first global orientation. The second nanowire or semiconductor body is isolated from the crystalline substrate by an isolation pedestal disposed between the second nanowire or semiconductor body and the crystalline substrate.
摘要:
Common-substrate semiconductor devices having nanowires or semiconductor bodies with differing material orientation or composition and methods to form such common-substrate devices are described. For example, a semiconductor structure includes a first semiconductor device having a first nanowire or semiconductor body disposed above a crystalline substrate. The first nanowire or semiconductor body is composed of a semiconductor material having a first global crystal orientation. The semiconductor structure also includes a second semiconductor device having a second nanowire or semiconductor body disposed above the crystalline substrate. The second nanowire or semiconductor body is composed of a semiconductor material having a second global crystal orientation different from the first global orientation. The second nanowire or semiconductor body is isolated from the crystalline substrate by an isolation pedestal disposed between the second nanowire or semiconductor body and the crystalline substrate.
摘要:
Techniques are disclosed for customization of nanowire transistor devices to provide a diverse range of channel configurations and/or material systems within the same integrated circuit die. In accordance with one example embodiment, sacrificial fins are removed and replaced with custom material stacks of arbitrary composition and strain suitable for a given application. In one such case, each of a first set of the sacrificial fins is recessed or otherwise removed and replaced with a p-type layer stack, and each of a second set of the sacrificial fins is recessed or otherwise removed and replaced with an n-type layer stack. The p-type layer stack can be completely independent of the process for the n-type layer stack, and vice-versa. Numerous other circuit configurations and device variations are enabled using the techniques provided herein.
摘要:
Techniques are disclosed for customization of nanowire transistor devices to provide a diverse range of channel configurations and/or material systems within the same integrated circuit die. In accordance with one example embodiment, sacrificial fins are removed and replaced with custom material stacks of arbitrary composition and strain suitable for a given application. In one such case, each of a first set of the sacrificial fins is recessed or otherwise removed and replaced with a p-type layer stack, and each of a second set of the sacrificial fins is recessed or otherwise removed and replaced with an n-type layer stack. The p-type layer stack can be completely independent of the process for the n-type layer stack, and vice-versa. Numerous other circuit configurations and device variations are enabled using the techniques provided herein.